22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The innate immunity of a marine red alga involves oxylipins from both the eicosanoid and octadecanoid pathways.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The oxygenated derivatives of fatty acids, known as oxylipins, are pivotal signaling molecules in animals and terrestrial plants. In animal systems, eicosanoids regulate cell differentiation, immune responses, and homeostasis. In contrast, terrestrial plants use derivatives of C18 and C16 fatty acids as developmental or defense hormones. Marine algae have emerged early in the evolution of eukaryotes as several distinct phyla, independent from the animal and green-plant lineages. The occurrence of oxylipins of the eicosanoid family is well documented in marine red algae, but their biological roles remain an enigma. Here we address the hypothesis that they are involved with the defense mechanisms of the red alga Chondrus crispus. By investigating its association with a green algal endophyte Acrochaete operculata, which becomes invasive in the diploid generation of this red alga, we showed that (1) when challenged by pathogen extracts, the resistant haploid phase of C. crispus produced both C20 and C18 oxylipins, (2) elicitation with pathogen extracts or methyl jasmonate activated the metabolism of C20 and C18 polyunsaturated fatty acids to generate hydroperoxides and cyclopentenones such as prostaglandins and jasmonates, and (3) C20 and C18 hydroperoxides as well as methyl jasmonate did induce shikimate dehydrogenase and Phe ammonialyase activities in C. crispus and conferred an induced resistance to the diploid phase, while inhibitors of fatty acid oxidation reduced the natural resistance of the haploid generation. The dual nature of oxylipin metabolism in this alga suggests that early eukaryotes featured both animal- (eicosanoids) and plant-like (octadecanoids) oxylipins as essential components of innate immunity mechanisms.

          Related collections

          Author and article information

          Journal
          Plant Physiol
          Plant physiology
          American Society of Plant Biologists (ASPB)
          0032-0889
          0032-0889
          Jul 2004
          : 135
          : 3
          Affiliations
          [1 ] UMR 7139, Station Biologique, F-29682 Roscoff cedex, France.
          Article
          pp.103.037622
          10.1104/pp.103.037622
          519094
          15247395
          da45bd22-4578-4ad7-8d9b-f2f8b655dd59
          History

          Comments

          Comment on this article