Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references326

          • Record: found
          • Abstract: found
          • Article: not found

          Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.

          Graphene, or single-layered graphite, with its high crystallinity and interesting semimetal electronic properties, has emerged as an exciting two-dimensional material showing great promise for the fabrication of nanoscale devices. Thin, elongated strips of graphene that possess straight edges, termed graphene ribbons, gradually transform from semiconductors to semimetals as their width increases, and represent a particularly versatile variety of graphene. Several lithographic, chemical and synthetic procedures are known to produce microscopic samples of graphene nanoribbons, and one chemical vapour deposition process has successfully produced macroscopic quantities of nanoribbons at 950 degrees C. Here we describe a simple solution-based oxidative process for producing a nearly 100% yield of nanoribbon structures by lengthwise cutting and unravelling of multiwalled carbon nanotube (MWCNT) side walls. Although oxidative shortening of MWCNTs has previously been achieved, lengthwise cutting is hitherto unreported. Ribbon structures with high water solubility are obtained. Subsequent chemical reduction of the nanoribbons from MWCNTs results in restoration of electrical conductivity. These early results affording nanoribbons could eventually lead to applications in fields of electronics and composite materials where bulk quantities of nanoribbons are required.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MEMBRANE FILTRATION. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation.

            Membranes with unprecedented solvent permeance and high retention of dissolved solutes are needed to reduce the energy consumed by separations in organic liquids. We used controlled interfacial polymerization to form free-standing polyamide nanofilms less than 10 nanometers in thickness, and incorporated them as separating layers in composite membranes. Manipulation of nanofilm morphology by control of interfacial reaction conditions enabled the creation of smooth or crumpled textures; the nanofilms were sufficiently rigid that the crumpled textures could withstand pressurized filtration, resulting in increased permeable area. Composite membranes comprising crumpled nanofilms on alumina supports provided high retention of solutes, with acetonitrile permeances up to 112 liters per square meter per hour per bar. This is more than two orders of magnitude higher than permeances of commercially available membranes with equivalent solute retention.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A review of water treatment membrane nanotechnologies

                Bookmark

                Author and article information

                Journal
                Journal of Industrial and Engineering Chemistry
                Journal of Industrial and Engineering Chemistry
                Elsevier BV
                1226086X
                September 2021
                September 2021
                : 101
                : 78-125
                Article
                10.1016/j.jiec.2021.06.022
                d9b8918f-dd18-4fce-b76c-3ee7a9910ed8
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,718

                Cited by16

                Most referenced authors2,905