9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Three structurally and functionally distinct β-glucuronidases from the human gut microbe Bacteroides uniformis

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d558224e284">The glycoside hydrolases encoded by the human gut microbiome play an integral role in processing a variety of exogenous and endogenous glycoconjugates. Here we present three structurally and functionally distinct β-glucuronidase (GUS) glycoside hydrolases from a single human gut commensal microbe, <i>Bacteroides uniformis</i>. We show using nine crystal structures, biochemical, and biophysical data that whereas these three proteins share similar overall folds, they exhibit different structural features that create three structurally and functionally unique enzyme active sites. Notably, quaternary structure plays an important role in creating distinct active site features that are hard to predict via structural modeling methods. The enzymes display differential processing capabilities toward glucuronic acid–containing polysaccharides and SN-38-glucuronide, a metabolite of the cancer drug irinotecan. We also demonstrate that GUS-specific and nonselective inhibitors exhibit varying potencies toward each enzyme. Together, these data highlight the diversity of GUS enzymes within a single <i>Bacteroides</i> gut commensal and advance our understanding of how structural details impact the specific roles microbial enzymes play in processing drug-glucuronide and glycan substrates. </p>

          Related collections

          Most cited references18

          • Record: found
          • Abstract: not found
          • Article: not found

          Basic Local Alignment Search Tool

          S Altschul (1990)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Complex Glycan Catabolism by the Human Gut Microbiota: The Bacteroidetes Sus-like Paradigm*

            Trillions of microbes inhabit the distal gut of adult humans. They have evolved to compete efficiently for nutrients, including a wide array of chemically diverse, complex glycans present in our diets, secreted by our intestinal mucosa, and displayed on the surfaces of other gut microbes. Here, we review how members of the Bacteroidetes, one of two dominant gut-associated bacterial phyla, process complex glycans using a series of similarly patterned, cell envelope-associated multiprotein systems. These systems provide insights into how gut, as well as terrestrial and aquatic, Bacteroidetes survive in highly competitive ecosystems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A hierarchical classification of polysaccharide lyases for glycogenomics.

              Carbohydrate-active enzymes face huge substrate diversity in a highly selective manner using only a limited number of available folds. They are therefore subjected to multiple divergent and convergent evolutionary events. This and their frequent modularity render their functional annotation in genomes difficult in a number of cases. In the present paper, a classification of polysaccharide lyases (the enzymes that cleave polysaccharides using an elimination instead of a hydrolytic mechanism) is shown thoroughly for the first time. Based on the analysis of a large panel of experimentally characterized polysaccharide lyases, we examined the correlation of various enzyme properties with the three levels of the classification: fold, family and subfamily. The resulting hierarchical classification, which should help annotate relevant genes in genomic efforts, is available and constantly updated at the Carbohydrate-Active Enzymes Database (http://www.cazy.org).
                Bookmark

                Author and article information

                Journal
                Journal of Biological Chemistry
                J. Biol. Chem.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                0021-9258
                1083-351X
                November 30 2018
                November 30 2018
                November 30 2018
                October 09 2018
                : 293
                : 48
                : 18559-18573
                Article
                10.1074/jbc.RA118.005414
                6290157
                30301767
                d9b318c3-92ef-4f12-bc40-163f1da8e2a8
                © 2018
                History

                Comments

                Comment on this article