148
views
1
recommends
+1 Recommend
0 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      β-Amyloid accumulation in the human brain after one night of sleep deprivation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Significance

          There has been an emerging interest in sleep and its association with β-amyloid burden as a risk factor for Alzheimer’s disease. Despite the evidence that acute sleep deprivation elevates β-amyloid levels in mouse interstitial fluid and in human cerebrospinal fluid, not much is known about the impact of sleep deprivation on β-amyloid burden in the human brain. Using positron emission tomography, here we show that acute sleep deprivation impacts β-amyloid burden in brain regions that have been implicated in Alzheimer’s disease. Our observations provide preliminary evidence for the negative effect of sleep deprivation on β-amyloid burden in the human brain.

          Abstract

          The effects of acute sleep deprivation on β-amyloid (Aβ) clearance in the human brain have not been documented. Here we used PET and 18F-florbetaben to measure brain Aβ burden (ABB) in 20 healthy controls tested after a night of rested sleep (baseline) and after a night of sleep deprivation. We show that one night of sleep deprivation, relative to baseline, resulted in a significant increase in Aβ burden in the right hippocampus and thalamus. These increases were associated with mood worsening following sleep deprivation, but were not related to the genetic risk (APOE genotype) for Alzheimer’s disease. Additionally, baseline ABB in a range of subcortical regions and the precuneus was inversely associated with reported night sleep hours. APOE genotyping was also linked to subcortical ABB, suggesting that different Alzheimer’s disease risk factors might independently affect ABB in nearby brain regions. In summary, our findings show adverse effects of one-night sleep deprivation on brain ABB and expand on prior findings of higher Aβ accumulation with chronic less sleep.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease.

          Compelling evidence from basic molecular biology has demonstrated the dual roles of microglia in the pathogenesis of Alzheimer's disease (AD). On one hand, microglia are involved in AD pathogenesis by releasing inflammatory mediators such as inflammatory cytokines, complement components, chemokines, and free radicals that are all known to contribute to beta-amyloid (Aβ) production and accumulation. On the other hand, microglia are also known to play a beneficial role in generating anti-Aβ antibodies and stimulating clearance of amyloid plaques. Aβ itself, an inducer of microglia activation and neuroinflammation, has been considered as an underlying and unifying factor in the development of AD. A vicious cycle of inflammation has been formed between Aβ accumulation, activated microglia, and microglial inflammatory mediators, which enhance Aβ deposition and neuroinflammation. Thus, inhibiting the vicious cycle seems to be a promising treatment to restrain further development of AD. With increasing research efforts on microglia in AD, intervention of microglia activation and neuroinflammation in AD may provide a potential target for AD therapy in spite of the provisional failure of nonsteroidal antiinflammatory drugs in clinical trials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Parametric imaging of ligand-receptor binding in PET using a simplified reference region model.

            A method is presented for the generation of parametric images of radioligand-receptor binding using PET. The method is based on a simplified reference region compartmental model, which requires no arterial blood sampling, and gives parametric images of both the binding potential of the radioligand and its local rate of delivery relative to the reference region. The technique presented for the estimation of parameters in the model employs a set of basis functions which enables the incorporation of parameter bounds. This basis function method (BFM) is compared with conventional nonlinear least squares estimation of parameters (NLM), using both simulated and real data. BFM is shown to be more stable than NLM at the voxel level and is computationally much faster. Application of the technique is illustrated for three radiotracers: [11C]raclopride (a marker of the D2 receptor), [11C]SCH 23390 (a marker of the D1 receptor) in human studies, and [11C]CFT (a marker of the dopamine transporter) in rats. The assumptions implicit in the model and its implementation using BFM are discussed. Copyright 1997 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Effect of Body Posture on Brain Glymphatic Transport.

              The glymphatic pathway expedites clearance of waste, including soluble amyloid β (Aβ) from the brain. Transport through this pathway is controlled by the brain's arousal level because, during sleep or anesthesia, the brain's interstitial space volume expands (compared with wakefulness), resulting in faster waste removal. Humans, as well as animals, exhibit different body postures during sleep, which may also affect waste removal. Therefore, not only the level of consciousness, but also body posture, might affect CSF-interstitial fluid (ISF) exchange efficiency. We used dynamic-contrast-enhanced MRI and kinetic modeling to quantify CSF-ISF exchange rates in anesthetized rodents' brains in supine, prone, or lateral positions. To validate the MRI data and to assess specifically the influence of body posture on clearance of Aβ, we used fluorescence microscopy and radioactive tracers, respectively. The analysis showed that glymphatic transport was most efficient in the lateral position compared with the supine or prone positions. In the prone position, in which the rat's head was in the most upright position (mimicking posture during the awake state), transport was characterized by "retention" of the tracer, slower clearance, and more CSF efflux along larger caliber cervical vessels. The optical imaging and radiotracer studies confirmed that glymphatic transport and Aβ clearance were superior in the lateral and supine positions. We propose that the most popular sleep posture (lateral) has evolved to optimize waste removal during sleep and that posture must be considered in diagnostic imaging procedures developed in the future to assess CSF-ISF transport in humans.
                Bookmark

                Author and article information

                Journal
                Proc Natl Acad Sci U S A
                Proc. Natl. Acad. Sci. U.S.A
                pnas
                pnas
                PNAS
                Proceedings of the National Academy of Sciences of the United States of America
                National Academy of Sciences
                0027-8424
                1091-6490
                24 April 2018
                9 April 2018
                9 April 2018
                : 115
                : 17
                : 4483-4488
                Affiliations
                [1] aLaboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health , Bethesda, MD 20892;
                [2] bPiramal Pharma Inc. , Boston, MA 02108;
                [3] cDepartment of Anesthesiology, Yale School of Medicine , New Haven, CT 06510
                Author notes

                Edited by Michael E. Phelps, University of California, Los Angeles, CA, and approved March 13, 2018 (received for review December 14, 2017)

                Author contributions: N.D.V. conceived study; E.S.-K., G.-J.W., C.E.W., S.B.D., S.W.K., S.D.S., D.T., H.B., and N.D.V. designed research; E.S.-K., G.-J.W., C.E.W., S.B.D., M.G., S.W.K., E.L., V.R., A.Z., C.F., G.M., P.M., T.S., S.D.S., D.T., H.B., and N.D.V. performed research; E.S.-K. analyzed data; and E.S.-K. and N.D.V. wrote the paper.

                Author information
                http://orcid.org/0000-0001-6846-3173
                Article
                201721694
                10.1073/pnas.1721694115
                5924922
                29632177
                d991530f-1316-4322-aa03-f31b19e8935c
                Copyright © 2018 the Author(s). Published by PNAS.

                This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

                History
                Page count
                Pages: 6
                Funding
                Funded by: HHS | NIH | National Institute on Alcohol Abuse and Alcoholism (NIAAA) 100000027
                Award ID: Y1AA3009
                Categories
                Biological Sciences
                Neuroscience

                beta amyloid,sleep,hippocampus,alzheimer’s disease,glymphatic system

                Comments

                Comment on this article