14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Interleukin-6 promotes a sustained loss of endothelial barrier function via Janus kinase-mediated STAT3 phosphorylation and de novo protein synthesis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vascular leakage is a hallmark of the inflammatory response. Acute changes in endothelial permeability are due to posttranslational changes in intercellular adhesion and cytoskeleton proteins. However, little is known about the mechanisms leading to long-term changes in vascular permeability. Here, we show that interleukin-6 (IL-6) promotes an increase in endothelial monolayer permeability that lasts over 24 h and demonstrate that activation of Src and MEK/ERK pathways is required only for short-term increases in permeability, being dispensable after 2 h. In contrast, Janus kinase (JAK)-mediated STAT3 phosphorylation at Y705 (but not S727) and de novo synthesis of RNA and proteins are required for the sustained permeability increases. Loss of junctional localization of VE-cadherin and ZO-1 is evident several hours after the maximal IL-6 response, thus suggesting that these events are a consequence of IL-6 signaling, but not a cause of the increased permeability. Understanding the mechanisms involved in sustaining vascular permeability may prove crucial to allow us to directly target vascular leakage and minimize tissue damage, thus reducing the rates of mortality and chronic sequelae of excessive edema. Targeting endothelial-specific mechanisms regulating barrier function could provide a new therapeutic strategy to prevent vascular leakage while maintaining the immune response and other beneficial aspects of the inflammatory response that are required for bacterial clearance and tissue repair.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Function of mitochondrial Stat3 in cellular respiration.

          Cytokines such as interleukin-6 induce tyrosine and serine phosphorylation of Stat3 that results in activation of Stat3-responsive genes. We provide evidence that Stat3 is present in the mitochondria of cultured cells and primary tissues, including the liver and heart. In Stat3(-/-) cells, the activities of complexes I and II of the electron transport chain (ETC) were significantly decreased. We identified Stat3 mutants that selectively restored the protein's function as a transcription factor or its functions within the ETC. In mice that do not express Stat3 in the heart, there were also selective defects in the activities of complexes I and II of the ETC. These data indicate that Stat3 is required for optimal function of the ETC, which may allow it to orchestrate responses to cellular homeostasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial STAT3 supports Ras-dependent oncogenic transformation.

            Signal transducer and activator of transcription 3 (STAT3) is a latent cytoplasmic transcription factor responsive to cytokine signaling and tyrosine kinase oncoproteins by nuclear translocation when it is tyrosine-phosphorylated. We report that malignant transformation by activated Ras is impaired without STAT3, in spite of the inability of Ras to drive STAT3 tyrosine phosphorylation or nuclear translocation. Moreover, STAT3 mutants that cannot be tyrosine-phosphorylated, that are retained in the cytoplasm, or that cannot bind DNA nonetheless supported Ras-mediated transformation. Unexpectedly, STAT3 was detected within mitochondria, and exclusive targeting of STAT3 to mitochondria without nuclear accumulation facilitated Ras transformation. Mitochondrial STAT3 sustained altered glycolytic and oxidative phosphorylation activities characteristic of cancer cells. Thus, in addition to its nuclear transcriptional role, STAT3 regulates a metabolic function in mitochondria, supporting Ras-dependent malignant transformation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Edema and brain trauma.

              Brain edema leading to an expansion of brain volume has a crucial impact on morbidity and mortality following traumatic brain injury (TBI) as it increases intracranial pressure, impairs cerebral perfusion and oxygenation, and contributes to additional ischemic injuries. Classically, two major types of traumatic brain edema exist: "vasogenic" due to blood-brain barrier (BBB) disruption resulting in extracellular water accumulation and "cytotoxic/cellular" due to sustained intracellular water collection. A third type, "osmotic" brain edema is caused by osmotic imbalances between blood and tissue. Rarely after TBI do we encounter a "hydrocephalic edema/interstitial" brain edema related to an obstruction of cerebrospinal fluid outflow. Following TBI, various mediators are released which enhance vasogenic and/or cytotoxic brain edema. These include glutamate, lactate, H(+), K(+), Ca(2+), nitric oxide, arachidonic acid and its metabolites, free oxygen radicals, histamine, and kinins. Thus, avoiding cerebral anaerobic metabolism and acidosis is beneficial to control lactate and H(+), but no compound inhibiting mediators/mediator channels showed beneficial results in conducted clinical trials, despite successful experimental studies. Hence, anti-edematous therapy in TBI patients is still symptomatic and rather non-specific (e.g. mannitol infusion, controlled hyperventilation). For many years, vasogenic brain edema was accepted as the prevalent edema type following TBI. The development of mechanical TBI models ("weight drop," "fluid percussion injury," and "controlled cortical impact injury") and the use of magnetic resonance imaging, however, revealed that "cytotoxic" edema is of decisive pathophysiological importance following TBI as it develops early and persists while BBB integrity is gradually restored. These findings suggest that cytotoxic and vasogenic brain edema are two entities which can be targeted simultaneously or according to their temporal prevalence.
                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Cell Physiology
                American Journal of Physiology-Cell Physiology
                American Physiological Society
                0363-6143
                1522-1563
                May 01 2018
                May 01 2018
                : 314
                : 5
                : C589-C602
                Affiliations
                [1 ]Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, New York
                [2 ]Department of Ophthalmology, Albany Medical Center, Albany, New York
                Article
                10.1152/ajpcell.00235.2017
                29351406
                d93c2f5d-0b27-466e-9c9d-2bc90142dfbc
                © 2018
                History

                Comments

                Comment on this article