0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Experimental study of mosquito-inspired needle to minimize insertion force and tissue deformation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this work is to propose a mosquito-inspired (bioinspired) design of a surgical needle that can decrease the insertion force and the tissue deformation, which are the main causes of target inaccuracy during percutaneous procedures. The bioinspired needle was developed by mimicking the geometrical shapes of mosquito proboscis. Needle prototypes were manufactured and tested to determine optimized needle shapes and geometries. Needle insertion tests on a tissue-mimicking polyvinylchloride (PVC) gel were then performed to emulate the mosquito-proboscis stinging dynamics by applying vibration and insertion velocity during the insertion. An insertion test setup equipped with a sensing system was constructed to measure the insertion force and to assess the deformation of the tissue. It was discovered that using the proposed bioinspired design, the needle insertion force was decreased by 60% and the tissue deformation was reduced by 48%. This finding is significant for improving needle-based medical procedures.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force.

          As a hybrid between a hypodermic needle and transdermal patch, we have used microfabrication technology to make arrays of micron-scale needles that transport drugs and other compounds across the skin without causing pain. However, not all microneedle geometries are able to insert into skin at reasonable forces and without breaking. In this study, we experimentally measured and theoretically modeled two critical mechanical events associated with microneedles: the force required to insert microneedles into living skin and the force needles can withstand before fracturing. Over the range of microneedle geometries investigated, insertion force was found to vary linearly with the interfacial area of the needle tip. Measured insertion forces ranged from approximately 0.1-3N, which is sufficiently low to permit insertion by hand. The force required to fracture microneedles was found to increase with increasing wall thickness, wall angle, and possibly tip radius, in agreement with finite element simulations and a thin shell analytical model. For almost all geometries considered, the margin of safety, or the ratio of fracture force to insertion force, was much greater than one and was found to increase with increasing wall thickness and decreasing tip radius. Together, these results provide the ability to predict insertion and fracture forces, which facilitates rational design of microneedles with robust mechanical properties.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Force modeling for needle insertion into soft tissue.

            The modeling of forces during needle insertion into soft tissue is important for accurate surgical simulation, preoperative planning, and intelligent robotic assistance for percutaneous therapies. We present a force model for needle insertion and experimental procedures for acquiring data from ex vivo tissue to populate that model. Data were collected from bovine livers using a one-degree-of-freedom robot equipped with a load cell and needle attachment. computed tomography imaging was used to segment the needle insertion process into phases identifying different relative velocities between the needle and tissue. The data were measured and modeled in three parts: 1) capsule stiffness, a nonlinear spring model; 2) friction, a modified Karnopp model; and 3) cutting, a constant for a given tissue. In addition, we characterized the effects of needle diameter and tip type on insertion force using a silicone rubber phantom. In comparison to triangular and diamond tips, a bevel tip causes more needle bending and is more easily affected by tissue density variations. Forces for larger diameter needles are higher due to increased cutting and friction forces.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Needle insertion into soft tissue: a survey.

              Needle insertion in soft tissue has attracted considerable attention in recent years due to its application in minimally invasive percutaneous procedures such as biopsies and brachytherapy. This paper presents a survey of the current state of research on needle insertion in soft tissue. It examines the topic from several aspects, e.g. modeling needle insertion forces, modeling tissue deformation and needle deflection during insertion, robot-assisted needle insertion, and the effect of different trajectories on tissue deformation. All studies show that the axial force of a needle during insertion in soft tissue is the summation of different forces distributed along the needle shaft such as stiffness force, frictional force and cutting force. Some studies have modeled these forces. The force data in some procedures is used for identifying tissue layers as the needle is inserted or for path planning. Needle deflection and tissue deformation are major problems for accurate needle insertion and attempts have been made to model them. Using current models several insertion techniques have been developed which are briefly reviewed in this paper.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
                Proc Inst Mech Eng H
                SAGE Publications
                0954-4119
                2041-3033
                January 2023
                November 27 2022
                January 2023
                : 237
                : 1
                : 113-123
                Affiliations
                [1 ]Department of Mechanical Engineering, Temple University, Philadelphia, PA, USA
                [2 ]Department of Electrical and Computer Engineering, Temple University, Philadelphia, PA, USA
                Article
                10.1177/09544119221137133
                d8f17c1a-e0ec-498e-9b24-84bb761afb32
                © 2023

                http://journals.sagepub.com/page/policies/text-and-data-mining-license

                History

                Comments

                Comment on this article