1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Targeting microbiota-host interactions with resveratrol on cancer: Effects and potential mechanisms of action

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references168

          • Record: found
          • Abstract: found
          • Article: not found

          Metabolic endotoxemia initiates obesity and insulin resistance.

          Diabetes and obesity are two metabolic diseases characterized by insulin resistance and a low-grade inflammation. Seeking an inflammatory factor causative of the onset of insulin resistance, obesity, and diabetes, we have identified bacterial lipopolysaccharide (LPS) as a triggering factor. We found that normal endotoxemia increased or decreased during the fed or fasted state, respectively, on a nutritional basis and that a 4-week high-fat diet chronically increased plasma LPS concentration two to three times, a threshold that we have defined as metabolic endotoxemia. Importantly, a high-fat diet increased the proportion of an LPS-containing microbiota in the gut. When metabolic endotoxemia was induced for 4 weeks in mice through continuous subcutaneous infusion of LPS, fasted glycemia and insulinemia and whole-body, liver, and adipose tissue weight gain were increased to a similar extent as in high-fat-fed mice. In addition, adipose tissue F4/80-positive cells and markers of inflammation, and liver triglyceride content, were increased. Furthermore, liver, but not whole-body, insulin resistance was detected in LPS-infused mice. CD14 mutant mice resisted most of the LPS and high-fat diet-induced features of metabolic diseases. This new finding demonstrates that metabolic endotoxemia dysregulates the inflammatory tone and triggers body weight gain and diabetes. We conclude that the LPS/CD14 system sets the tone of insulin sensitivity and the onset of diabetes and obesity. Lowering plasma LPS concentration could be a potent strategy for the control of metabolic diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional interactions between the gut microbiota and host metabolism.

            The link between the microbes in the human gut and the development of obesity, cardiovascular disease and metabolic syndromes, such as type 2 diabetes, is becoming clearer. However, because of the complexity of the microbial community, the functional connections are less well understood. Studies in both mice and humans are helping to show what effect the gut microbiota has on host metabolism by improving energy yield from food and modulating dietary or the host-derived compounds that alter host metabolic pathways. Through increased knowledge of the mechanisms involved in the interactions between the microbiota and its host, we will be in a better position to develop treatments for metabolic disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment.

              Increasing evidence links the gut microbiota with colorectal cancer. Metagenomic analyses indicate that symbiotic Fusobacterium spp. are associated with human colorectal carcinoma, but whether this is an indirect or causal link remains unclear. We find that Fusobacterium spp. are enriched in human colonic adenomas relative to surrounding tissues and in stool samples from colorectal adenoma and carcinoma patients compared to healthy subjects. Additionally, in the Apc(Min/+) mouse model of intestinal tumorigenesis, Fusobacterium nucleatum increases tumor multiplicity and selectively recruits tumor-infiltrating myeloid cells, which can promote tumor progression. Tumors from Apc(Min/+) mice exposed to F. nucleatum exhibit a proinflammatory expression signature that is shared with human fusobacteria-positive colorectal carcinomas. However, unlike other bacteria linked to colorectal carcinoma, F. nucleatum does not exacerbate colitis, enteritis, or inflammation-associated intestinal carcinogenesis. Collectively, these data suggest that, through recruitment of tumor-infiltrating immune cells, fusobacteria generate a proinflammatory microenvironment that is conducive for colorectal neoplasia progression. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Critical Reviews in Food Science and Nutrition
                Critical Reviews in Food Science and Nutrition
                Informa UK Limited
                1040-8398
                1549-7852
                August 02 2022
                : 1-23
                Affiliations
                [1 ]Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
                [2 ]Department of General Surgery, Affiliated Haixia Hospital of Huaqiao University (The 910 Hospital), Quanzhou, Fujian, China
                [3 ]College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
                Article
                10.1080/10408398.2022.2106180
                35917112
                d87d85b2-b56d-473e-b2cb-c8a4e4dfe558
                © 2022
                History

                Comments

                Comment on this article