33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Temporal clustering of gene expression links the metabolic transcription factor HNF4α to the ER stress-dependent gene regulatory network

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The unfolded protein response (UPR) responds to disruption of endoplasmic reticulum (ER) function by initiating signaling cascades that ultimately culminate in extensive transcriptional regulation. Classically, this regulation includes genes encoding ER chaperones, ER-associated degradation factors, and others involved in secretory protein folding and processing, and is carried out by the transcriptional activators that are produced as a consequence of UPR activation. However, up to half of the mRNAs regulated by ER stress are downregulated rather than upregulated, and the mechanisms linking ER stress and UPR activation to mRNA suppression are poorly understood. To begin to address this issue, we used a “bottom-up” approach to study the metabolic gene regulatory network controlled by the UPR in the liver, because ER stress in the liver leads to lipid accumulation, and fatty liver disease is the most common liver disease in the western world. qRT-PCR profiling of mouse liver mRNAs during ER stress revealed that suppression of the transcriptional regulators C/EBPα, PPARα, and PGC-1α preceded lipid accumulation, and was then followed by suppression of mRNAs encoding key enzymes involved in fatty acid oxidation and lipoprotein biogenesis and transport. Mice lacking the ER stress sensor ATF6α, which experience persistent ER stress and profound lipid accumulation during challenge, were then used as the basis for a functional genomics approach that allowed genes to be grouped into distinct expression profiles. This clustering predicted that ER stress would suppress the activity of the metabolic transcriptional regulator HNF4α—a finding subsequently confirmed by chromatin immunopreciptation at the Cebpa and Pgc1a promoters. Our results establish a framework for hepatic gene regulation during ER stress and suggest that HNF4α occupies the apex of that framework. They also provide a unique resource for the community to further explore the temporal regulation of gene expression during ER stress in vivo.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1.

          Metazoans express three unfolded protein response transducers (IRE1, PERK, and ATF6) ubiquitously to cope with endoplasmic reticulum (ER) stress. ATF6 is an ER membrane-bound transcription factor activated by ER stress-induced proteolysis and has been duplicated in mammals. Here, we generated ATF6alpha- and ATF6beta-knockout mice, which developed normally, and then found that their double knockout caused embryonic lethality. Analysis of mouse embryonic fibroblasts (MEFs) deficient in ATF6alpha or ATF6beta revealed that ATF6alpha is solely responsible for transcriptional induction of ER chaperones and that ATF6alpha heterodimerizes with XBP1 for the induction of ER-associated degradation components. ATF6alpha(-/-) MEFs are sensitive to ER stress. Unaltered responses observed in ATF6beta(-/-) MEFs indicate that ATF6beta is not a negative regulator of ATF6alpha. These results demonstrate that ATF6alpha functions as a critical regulator of ER quality control proteins in mammalian cells, in marked contrast to worm and fly cells in which IRE1 is responsible.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis.

            The numerous functions of the liver are controlled primarily at the transcriptional level by the concerted actions of a limited number of hepatocyte-enriched transcription factors (hepatocyte nuclear factor 1alpha [HNF1alpha], -1beta, -3alpha, -3beta, -3gamma, -4alpha, and -6 and members of the c/ebp family). Of these, only HNF4alpha (nuclear receptor 2A1) and HNF1alpha appear to be correlated with the differentiated phenotype of cultured hepatoma cells. HNF1alpha-null mice are viable, indicating that this factor is not an absolute requirement for the formation of an active hepatic parenchyma. In contrast, HNF4alpha-null mice die during embryogenesis. Moreover, recent in vitro experiments using tetraploid aggregation suggest that HNF4alpha is indispensable for hepatocyte differentiation. However, the function of HNF4alpha in the maintenance of hepatocyte differentiation and function is less well understood. To address the function of HNF4alpha in the mature hepatocyte, a conditional gene knockout was produced using the Cre-loxP system. Mice lacking hepatic HNF4alpha expression accumulated lipid in the liver and exhibited greatly reduced serum cholesterol and triglyceride levels and increased serum bile acid concentrations. The observed phenotypes may be explained by (i) a selective disruption of very-low-density lipoprotein secretion due to decreased expression of genes encoding apolipoprotein B and microsomal triglyceride transfer protein, (ii) an increase in hepatic cholesterol uptake due to increased expression of the major high-density lipoprotein receptor, scavenger receptor BI, and (iii) a decrease in bile acid uptake to the liver due to down-regulation of the major basolateral bile acid transporters sodium taurocholate cotransporter protein and organic anion transporter protein 1. These data indicate that HNF4alpha is central to the maintenance of hepatocyte differentiation and is a major in vivo regulator of genes involved in the control of lipid homeostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response.

              Transcription of genes encoding molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) is induced by accumulation of unfolded proteins in the ER. This intracellular signaling, known as the unfolded protein response (UPR), is mediated by the cis-acting ER stress response element (ERSE) in mammals. In addition to ER chaperones, the mammalian transcription factor CHOP (also called GADD153) is induced by ER stress. We report here that the transcription factor XBP-1 (also called TREB5) is also induced by ER stress and that induction of CHOP and XBP-1 is mediated by ERSE. The ERSE consensus sequence is CCAAT-N(9)-CCACG. As the general transcription factor NF-Y (also known as CBF) binds to CCAAT, CCACG is considered to provide specificity in the mammalian UPR. We recently found that the basic leucine zipper protein ATF6 isolated as a CCACG-binding protein is synthesized as a transmembrane protein in the ER, and ER stress-induced proteolysis produces a soluble form of ATF6 that translocates into the nucleus. We report here that overexpression of soluble ATF6 activates transcription of the CHOP and XBP-1 genes as well as of ER chaperone genes constitutively, whereas overexpression of a dominant negative mutant of ATF6 blocks the induction by ER stress. Furthermore, we demonstrated that soluble ATF6 binds directly to CCACG only when CCAAT exactly 9 bp upstream of CCACG is bound to NF-Y. Based on these and other findings, we concluded that specific and direct interactions between ATF6 and ERSE are critical for transcriptional induction not only of ER chaperones but also of CHOP and XBP-1.
                Bookmark

                Author and article information

                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                02 September 2013
                24 September 2013
                2013
                : 4
                : 188
                Affiliations
                [1] 1Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine Iowa City, IA, USA
                [2] 2Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Sanford Burnham Medical Research Institute La Jolla, CA, USA
                [3] 3Department of Internal Medicine, University of Iowa Carver College of Medicine Iowa City, IA, USA
                Author notes

                Edited by: Kezhong Zhang, Wayne State University, USA

                Reviewed by: Erik Snapp, Albert Einstein College of Medicine of Yeshiva University, USA; Xuequn Chen, Wayne State University, USA

                *Correspondence: D. Thomas Rutkowski, Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, 1-570 BSB, 51 Newton Rd., Iowa City, IA 52242, USA e-mail: thomas-rutkowski@ 123456uiowa.edu

                This article was submitted to Genomic Endocrinology, a section of the journal Frontiers in Genetics.

                †These authors have contributed equally to this work.

                Article
                10.3389/fgene.2013.00188
                3781334
                24069029
                d82f189d-0007-4293-a878-efaa23647a8f
                Copyright © 2013 Arensdorf, DeZwaan McCabe, Kaufman and Rutkowski.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 August 2013
                : 03 September 2013
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 53, Pages: 14, Words: 9730
                Categories
                Endocrinology
                Original Research Article

                Genetics
                er stress,fatty liver,functional genomics,gene regulatory network,lipid metabolism
                Genetics
                er stress, fatty liver, functional genomics, gene regulatory network, lipid metabolism

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content171

                Cited by11

                Most referenced authors841