45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The numerous functions of the liver are controlled primarily at the transcriptional level by the concerted actions of a limited number of hepatocyte-enriched transcription factors (hepatocyte nuclear factor 1alpha [HNF1alpha], -1beta, -3alpha, -3beta, -3gamma, -4alpha, and -6 and members of the c/ebp family). Of these, only HNF4alpha (nuclear receptor 2A1) and HNF1alpha appear to be correlated with the differentiated phenotype of cultured hepatoma cells. HNF1alpha-null mice are viable, indicating that this factor is not an absolute requirement for the formation of an active hepatic parenchyma. In contrast, HNF4alpha-null mice die during embryogenesis. Moreover, recent in vitro experiments using tetraploid aggregation suggest that HNF4alpha is indispensable for hepatocyte differentiation. However, the function of HNF4alpha in the maintenance of hepatocyte differentiation and function is less well understood. To address the function of HNF4alpha in the mature hepatocyte, a conditional gene knockout was produced using the Cre-loxP system. Mice lacking hepatic HNF4alpha expression accumulated lipid in the liver and exhibited greatly reduced serum cholesterol and triglyceride levels and increased serum bile acid concentrations. The observed phenotypes may be explained by (i) a selective disruption of very-low-density lipoprotein secretion due to decreased expression of genes encoding apolipoprotein B and microsomal triglyceride transfer protein, (ii) an increase in hepatic cholesterol uptake due to increased expression of the major high-density lipoprotein receptor, scavenger receptor BI, and (iii) a decrease in bile acid uptake to the liver due to down-regulation of the major basolateral bile acid transporters sodium taurocholate cotransporter protein and organic anion transporter protein 1. These data indicate that HNF4alpha is central to the maintenance of hepatocyte differentiation and is a major in vivo regulator of genes involved in the control of lipid homeostasis.

          Related collections

          Author and article information

          Journal
          Mol Cell Biol
          Molecular and cellular biology
          American Society for Microbiology
          0270-7306
          0270-7306
          Feb 2001
          : 21
          : 4
          Affiliations
          [1 ] Laboratory of Metabolism, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
          Article
          10.1128/MCB.21.4.1393-1403.2001
          99591
          11158324
          239eba1a-c634-40f7-9aa5-8ddde860f4b0
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content154

          Cited by269