6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications

      review-article
      * ,
      Antioxidants
      MDPI
      zinc, MT, NF-κB, A20, HNF-4α, ROS

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The essentiality of zinc as a trace mineral in human health has been recognized for over five decades. Zinc deficiency, caused by diet, genetic defects, or diseases, can cause growth retardation, delayed sexual maturation, depressed immune response, and abnormal cognitive functions in humans. Zinc supplementation in zinc-deficient individuals can overcome or attenuate these abnormalities, suggesting zinc is an essential micro-nutrient in the body. A large number of in vitro and in vivo experimental studies indicate that zinc deficiency also causes apoptosis, cellular dysfunction, deoxyribonucleic acid (DNA) damage, and depressed immune response. Oxidative stress, due to the imbalance of reactive oxygen species (ROS) production and detoxification in the anti-oxidant defense system of the body, along with subsequent chronic inflammation, is believed to be associated with many chronic degenerative diseases such as diabetes, heart diseases, cancers, alcohol-related disease, macular degenerative disease, and neuro-pathogenesis. A large number of experimental studies including cell culture, animal, and human clinical studies have provided supportive evidence showing that zinc acts as an anti-oxidative stress agent by inhibition of oxidation of macro-molecules such as (DNA)/ribonucleic acid (RNA) and proteins as well as inhibition of inflammatory response, eventually resulting in the down-regulation of (ROS) production and the improvement of human health. In this article, we will discuss the molecular mechanisms of zinc as an anti-oxidative stress agent or mediator in the body. We will also discuss the applications of zinc supplementation as an anti-oxidative stress agent or mediator in human health and disease.

          Related collections

          Most cited references164

          • Record: found
          • Abstract: found
          • Article: not found

          PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines.

          The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the nuclear receptor family of transcription factors, a large and diverse group of proteins that mediate ligand-dependent transcriptional activation and repression. Expression of PPAR-gamma is an early and pivotal event in the differentiation of adipocytes. Several agents that promote differentiation of fibroblast lines into adipocytes have been shown to be PPAR-gamma agonists, including several prostanoids, of which 15-deoxy-delta-prostaglandin J2 is the most potent, as well as members of a new class of oral antidiabetic agents, the thiazolidinediones, and a variety of non-steroidal anti-inflammatory drugs (NSAIDs). Here we show that PPAR-gamma agonists suppress monocyte elaboration of inflammatory cytokines at agonist concentrations similar to those found to be effective for the promotion of adipogenesis. Inhibition of cytokine production may help to explain the incremental therapeutic benefit of NSAIDs observed in the treatment of rheumatoid arthritis at plasma drug concentrations substantially higher than are required to inhibit prostaglandin G/H synthase (cyclooxygenase).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults

            The reactive oxygen species (ROS) form under normal physiological conditions and may have both beneficial and harmful role. We search the literature and current knowledge in the aspect of ROS participation in the pathogenesis of anterior and posterior eye segment diseases in adults. ROS take part in the pathogenesis of keratoconus, Fuchs endothelial corneal dystrophy, and granular corneal dystrophy type 2, stimulating apoptosis of corneal cells. ROS play a role in the pathogenesis of glaucoma stimulating apoptotic and inflammatory pathways on the level of the trabecular meshwork and promoting retinal ganglion cells apoptosis and glial dysfunction in the posterior eye segment. ROS play a role in the pathogenesis of Leber's hereditary optic neuropathy and traumatic optic neuropathy. ROS induce apoptosis of human lens epithelial cells. ROS promote apoptosis of vascular and neuronal cells and stimulate inflammation and pathological angiogenesis in the course of diabetic retinopathy. ROS are associated with the pathophysiological parainflammation and autophagy process in the course of the age-related macular degeneration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling.

              Phagocytes such as neutrophils and macrophages produce reactive oxygen species (ROS) during phagocytosis or stimulation with a wide variety of agents through activation of nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase that is assembled at the plasma membrane from resident plasma membrane and cytosolic protein components. One of the subunits of the phagocyte NADPH oxidase is now recognized as a member of a family of NADPH oxidases, or NOX, present in cells other than phagocytes. Physiologic generation of ROS has been implicated in a variety of physiologic responses from transcriptional activation to cell proliferation and apoptosis. The increase in superoxide and hydrogen peroxide (H2O2) that results from stimulation of the NADPH oxidase is transient, in part due to the presence of the antioxidant enzymes, which return their concentrations to the prestimulation steady state level. Thus, the antioxidant enzymes may function in the "turn-off" phase of signal transduction by ROS. During its transient elevation, H2O2 may act as a modifier of key signaling enzymes through reversible oxidation of critical thiols. The rapid reaction of thiols with H2O2 when in their unprotonated state would provide a potential mechanism for the specificity that is necessary for physiologic cell signaling.
                Bookmark

                Author and article information

                Journal
                Antioxidants (Basel)
                Antioxidants (Basel)
                antioxidants
                Antioxidants
                MDPI
                2076-3921
                06 June 2019
                June 2019
                : 8
                : 6
                : 164
                Affiliations
                Department of Oncology, School of Medicine, Wayne State University and Karmanos Cancer Center, Detroit, MI 48201, USA; baob@ 123456karmanos.org
                Author notes
                [* ]Correspondence: prasada@ 123456karmanos.org ; Tel.: +1-313-577-1597
                Article
                antioxidants-08-00164
                10.3390/antiox8060164
                6617024
                31174269
                d806b34f-1701-489b-a2a0-c53bb1ac25d1
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 25 March 2019
                : 27 May 2019
                Categories
                Review

                zinc,mt,nf-κb,a20,hnf-4α,ros
                zinc, mt, nf-κb, a20, hnf-4α, ros

                Comments

                Comment on this article