36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deceased donor neutrophil gelatinase-associated lipocalin and delayed graft function after kidney transplantation: a prospective study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Expanding the criteria for deceased organ donors increases the risk of delayed graft function (DGF) and complicates kidney transplant outcome. We studied whether donor neutrophil gelatinase-associated lipocalin (NGAL), a novel biomarker for acute kidney injury, could predict DGF after transplantation.

          Methods

          We included 99 consecutive, deceased donors and their 176 kidney recipients. For NGAL detection, donor serum and urine samples were collected before the donor operation. The samples were analyzed using a commercial enzyme-linked immunosorbent assay kit (serum) and the ARCHITECT method (urine).

          Results

          Mean donor serum NGAL (S-NGAL) concentration was 218 ng/mL (range 27 to 658, standard deviation (SD) 145.1) and mean donor urine NGAL (U-NGAL) concentration was 18 ng/mL (range 0 to 177, SD 27.1). Donor S-NGAL and U-NGAL concentrations correlated directly with donor plasma creatinine levels and indirectly with estimated glomerular filtration rate (eGFR) calculated using the modification of diet in renal disease equation for glomerular filtration rate. In transplantations with high (greater than the mean) donor U-NGAL concentrations, prolonged DGF lasting longer than 14 days occurred more often than in transplantations with low (less than the mean) U-NGAL concentration (23% vs. 11%, P = 0.028), and 1-year graft survival was worse (90.3% vs. 97.4%, P = 0.048). High U-NGAL concentration was also associated with significantly more histological changes in the donor kidney biopsies than the low U-NGAL concentration. In a multivariate analysis, U-NGAL, expanded criteria donor status and eGFR emerged as independent risk factors for prolonged DGF. U-NGAL concentration failed to predict DGF on the basis of receiver operating characteristic curve analysis.

          Conclusions

          This first report on S-NGAL and U-NGAL levels in deceased donors shows that donor U-NGAL, but not donor S-NGAL, measurements give added value when evaluating the suitability of a potential deceased kidney donor.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          The Banff 97 working classification of renal allograft pathology.

          Standardization of renal allograft biopsy interpretation is necessary to guide therapy and to establish an objective end point for clinical trials. This manuscript describes a classification, Banff 97, developed by investigators using the Banff Schema and the Collaborative Clinical Trials in Transplantation (CCTT) modification for diagnosis of renal allograft pathology. Banff 97 grew from an international consensus discussion begun at Banff and continued via the Internet. This schema developed from (a) analysis of data using the Banff classification, (b) publication of and experience with the CCTT modification, (c) international conferences, and (d) data from recent studies on impact of vasculitis on transplant outcome. Semiquantitative lesion scoring continues to focus on tubulitis and arteritis but includes a minimum threshold for interstitial inflammation. Banff 97 defines "types" of acute/active rejection. Type I is tubulointerstitial rejection without arteritis. Type II is vascular rejection with intimal arteritis, and type III is severe rejection with transmural arterial changes. Biopsies with only mild inflammation are graded as "borderline/suspicious for rejection." Chronic/sclerosing allograft changes are graded based on severity of tubular atrophy and interstitial fibrosis. Antibody-mediated rejection, hyperacute or accelerated acute in presentation, is also categorized, as are other significant allograft findings. The Banff 97 working classification refines earlier schemas and represents input from two classifications most widely used in clinical rejection trials and in clinical practice worldwide. Major changes include the following: rejection with vasculitis is separated from tubulointerstitial rejection; severe rejection requires transmural changes in arteries; "borderline" rejection can only be interpreted in a clinical context; antibody-mediated rejection is further defined, and lesion scoring focuses on most severely involved structures. Criteria for specimen adequacy have also been modified. Banff 97 represents a significant refinement of allograft assessment, developed via international consensus discussions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine.

            Based on statistical analysis of data in 186 children, a formula was derived which allows accurate estimation of glomerular filtration rate (GFR) from plasma creatinine and body lenght (GFR(ml/min/1.73 sq m) = 0.55 length (cm)/Per (mg/dl). Its application to clearance data in a separate group of 223 children reveals excellent agreement with GFR estimated by the Ccr (r = .935) or Cin (r = .905). This formula should be useful for adjusting dosages of drugs excreted by the kidney and detecting significant changes in renal function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dual action of neutrophil gelatinase-associated lipocalin.

              Neutrophil gelatinase-associated lipocalin (NGAL) is expressed and secreted by immune cells, hepatocytes, and renal tubular cells in various pathologic states. NGAL exerts bacteriostatic effects, which are explained by its ability to capture and deplete siderophores, small iron-binding molecules that are synthesized by certain bacteria as a means of iron acquisition. Consistently, NGAL deficiency in genetically modified mice leads to an increased growth of bacteria. However, growing evidence suggests effects of the protein beyond fighting microorganisms. NGAL acts as a growth and differentiation factor in multiple cell types, including developing and mature renal epithelia, and some of this activity is enhanced in the presence of siderophore:iron complexes. This has led to the hypothesis that eukaryotes might synthesize siderophore-like molecules that bind NGAL. Accordingly, NGAL-mediated iron shuttling between the extracellular and intracellular spaces may explain some of the biologic activities of the protein. Interest in NGAL has been sparked by the observation that NGAL is massively upregulated after renal tubular injury and may participate in limiting kidney damage. This review summarizes the current knowledge about the dual effects of NGAL as a siderophore:iron-binding protein and as a growth factor and examines the role of these effects in renal injury.
                Bookmark

                Author and article information

                Journal
                Crit Care
                Critical Care
                BioMed Central
                1364-8535
                1466-609X
                2011
                5 May 2011
                : 15
                : 3
                : R121
                Affiliations
                [1 ]Division of Transplantation, Helsinki University Hospital, Kasarmikatu 11, 00130 Helsinki, Finland
                [2 ]HUSLAB, Helsinki University Hospital, Surgical Hospital, Kasarmikatu 11, 00130, Helsinki, Finland
                [3 ]Clinical Laboratory, Finnish Red Cross Blood Service, Kivihaantie 7, 00310, Helsinki, Finland
                Article
                cc10220
                10.1186/cc10220
                3218974
                21545740
                d7e9b382-2fc2-4ddf-b1fb-ad4ba6b674c2
                Copyright ©2011 Hollmen et al.; licensee BioMed Central Ltd

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

                History
                : 6 November 2010
                : 3 March 2011
                : 5 May 2011
                Categories
                Research

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article