6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polymeric Nanocapsules as Nanotechnological Alternative for Drug Delivery System: Current Status, Challenges and Opportunities

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polymer-based nanocapsules have been widely studied as a potential drug delivery system in recent years. Nanocapsules—as one of kind nanoparticle—provide a unique nanostructure, consisting of a liquid/solid core with a polymeric shell. This is of increasing interest in drug delivery applications. In this review, nanocapsules delivery systems studied in last decade are reviewed, along with nanocapsule formulation, characterizations of physical/chemical/biologic properties and applications. Furthermore, the challenges and opportunities of nanocapsules applications are also proposed.

          Related collections

          Most cited references198

          • Record: found
          • Abstract: found
          • Article: not found

          Principles of nanoparticle design for overcoming biological barriers to drug delivery.

          Biological barriers to drug transport prevent successful accumulation of nanotherapeutics specifically at diseased sites, limiting efficacious responses in disease processes ranging from cancer to inflammation. Although substantial research efforts have aimed to incorporate multiple functionalities and moieties within the overall nanoparticle design, many of these strategies fail to adequately address these barriers. Obstacles, such as nonspecific distribution and inadequate accumulation of therapeutics, remain formidable challenges to drug developers. A reimagining of conventional nanoparticles is needed to successfully negotiate these impediments to drug delivery. Site-specific delivery of therapeutics will remain a distant reality unless nanocarrier design takes into account the majority, if not all, of the biological barriers that a particle encounters upon intravenous administration. By successively addressing each of these barriers, innovative design features can be rationally incorporated that will create a new generation of nanotherapeutics, realizing a paradigmatic shift in nanoparticle-based drug delivery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanoparticle-based targeted drug delivery.

            Nanotechnology could be defined as the technology that has allowed for the control, manipulation, study, and manufacture of structures and devices in the "nanometer" size range. These nano-sized objects, e.g., "nanoparticles", take on novel properties and functions that differ markedly from those seen from items made of identical materials. The small size, customized surface, improved solubility, and multi-functionality of nanoparticles will continue to open many doors and create new biomedical applications. Indeed, the novel properties of nanoparticles offer the ability to interact with complex cellular functions in new ways. This rapidly growing field requires cross-disciplinary research and provides opportunities to design and develop multifunctional devices that can target, diagnose, and treat devastating diseases such as cancer. This article presents an overview of nanotechnology for the biologist and discusses the attributes of our novel XPclad((c)) nanoparticle formulation that has shown efficacy in treating solid tumors, single dose vaccination, and oral delivery of therapeutic proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanoparticles in medicine: therapeutic applications and developments.

              Nanotechnology is the understanding and control of matter generally in the 1-100 nm dimension range. The application of nanotechnology to medicine, known as nanomedicine, concerns the use of precisely engineered materials at this length scale to develop novel therapeutic and diagnostic modalities. Nanomaterials have unique physicochemical properties, such as ultra small size, large surface area to mass ratio, and high reactivity, which are different from bulk materials of the same composition. These properties can be used to overcome some of the limitations found in traditional therapeutic and diagnostic agents.
                Bookmark

                Author and article information

                Journal
                Nanomaterials (Basel)
                Nanomaterials (Basel)
                nanomaterials
                Nanomaterials
                MDPI
                2079-4991
                28 April 2020
                May 2020
                : 10
                : 5
                : 847
                Affiliations
                School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino (MC), Italy; siyuan.deng@ 123456unicam.it (S.D.); maria.gigliobianco@ 123456unicam.it (M.R.G.); roberta.censi@ 123456unicam.it (R.C.)
                Author notes
                [* ]Correspondence: piera.dimartino@ 123456unicam.it ; Tel.: +39-0737-40-2215
                Author information
                https://orcid.org/0000-0002-9699-4673
                https://orcid.org/0000-0002-7657-3556
                Article
                nanomaterials-10-00847
                10.3390/nano10050847
                7711922
                32354008
                d7d26b1b-571a-4046-89f1-dfca6ac7023d
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 06 April 2020
                : 23 April 2020
                Categories
                Review

                polymeric nanocapsule,drug delivery system,encapsulation,nanotechnology

                Comments

                Comment on this article