Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Using Explainable Artificial Intelligence (XAI) to Predict the Influence of Weather on the Thermal Soaring Capabilities of Sailplanes for Smart City Applications

      Smart Cities
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Drones, also known as unmanned aerial vehicles, could potentially be a key part of future smart cities by aiding traffic management, infrastructure inspection and maybe even last mile delivery. This paper contributes to the research on managing a fleet of soaring aircraft by gaining an understanding of the influence of the weather on soaring capabilities. To do so, machine learning algorithms were trained on flight data, which was recorded in the UK over the past ten years at selected gliding clubs (i.e., sailplanes). Methods: A random forest regressor was trained to predict the flight duration and a random forest (RF) classifier was used to predict whether at least one flight on a given day managed to soar in thermals. SHAP (SHapley Additive exPlanations), a form of explainable artificial intelligence (AI), was used to understand the predictions given by the models. Results: The best RF have a mean absolute error of 5.7 min (flight duration) and an accuracy of 81.2% (probability of soaring in a thermal on a given day). The explanations derived from SHAP are in line with the common knowledge about the effect of weather systems to predict soaring potential. However, the key conclusion of this study is the importance of combining human knowledge with machine learning to devise a holistic explanation of a machine learning model and to avoid misinterpretations.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          Random Forests

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Matplotlib: A 2D Graphics Environment

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Array programming with NumPy

              Array programming provides a powerful, compact and expressive syntax for accessing, manipulating and operating on data in vectors, matrices and higher-dimensional arrays. NumPy is the primary array programming library for the Python language. It has an essential role in research analysis pipelines in fields as diverse as physics, chemistry, astronomy, geoscience, biology, psychology, materials science, engineering, finance and economics. For example, in astronomy, NumPy was an important part of the software stack used in the discovery of gravitational waves 1 and in the first imaging of a black hole 2 . Here we review how a few fundamental array concepts lead to a simple and powerful programming paradigm for organizing, exploring and analysing scientific data. NumPy is the foundation upon which the scientific Python ecosystem is constructed. It is so pervasive that several projects, targeting audiences with specialized needs, have developed their own NumPy-like interfaces and array objects. Owing to its central position in the ecosystem, NumPy increasingly acts as an interoperability layer between such array computation libraries and, together with its application programming interface (API), provides a flexible framework to support the next decade of scientific and industrial analysis.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                SCMICS
                Smart Cities
                Smart Cities
                MDPI AG
                2624-6511
                February 2024
                January 15 2024
                : 7
                : 1
                : 163-178
                Article
                10.3390/smartcities7010007
                d73ecdaa-8c1c-4c6e-b1b7-99038353f028
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article