40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Platinum nanoparticles (PtNPs) are noteworthy scientific tools that are being explored in various biotechnological, nanomedicinal, and pharmacological fields. They are unique because of their large surface area and their numerous catalytic applications such as their use in automotive catalytic converters and as petrochemical cracking catalysts. PtNPs have been widely utilized not only in the industry, but also in medicine and diagnostics. PtNPs are extensively studied because of their antimicrobial, antioxidant, and anticancer properties. So far, only one review has been dedicated to the application of PtNPs to nanomedicine. However, no studies describe the synthesis, characterization, and biomedical application of PtNPs. Therefore, the aim of this review is to provide a comprehensive assessment of the current knowledge regarding the synthesis, including physical, chemical, and biological and toxicological effects of PtNPs on human health, in terms of both in vivo and in vitro experimental analysis. Special attention has been focused on the biological synthesis of PtNPs using various templates as reducing and stabilizing agents. Finally, we discuss the biomedical and other applications of PtNPs.

          Related collections

          Most cited references222

          • Record: found
          • Abstract: not found
          • Article: not found
          Is Open Access

          Nanoparticles: Properties, applications and toxicities

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs.

            We previously found that a polymer conjugated to the anticancer protein neocarzinostatin, named smancs, accumulated more in tumor tissues than did neocarzinostatin. To determine the general mechanism of this tumoritropic accumulation of smancs and other proteins, we used radioactive (51Cr-labeled) proteins of various molecular sizes (Mr 12,000 to 160,000) and other properties. In addition, we used dye-complexed serum albumin to visualize the accumulation in tumors of tumor-bearing mice. Many proteins progressively accumulated in the tumor tissues of these mice, and a ratio of the protein concentration in the tumor to that in the blood of 5 was obtained within 19 to 72 h. A large protein like immunoglobulin G required a longer time to reach this value of 5. The protein concentration ratio in the tumor to that in the blood of neither 1 nor 5 was achieved with neocarzinostatin, a representative of a small protein (Mr 12,000) in all time. We speculate that the tumoritropic accumulation of these proteins resulted because of the hypervasculature, an enhanced permeability to even macromolecules, and little recovery through either blood vessels or lymphatic vessels. This accumulation of macromolecules in the tumor was also found after i.v. injection of an albumin-dye complex (Mr 69,000), as well as after injection into normal and tumor tissues. The complex was retained only by tumor tissue for prolonged periods. There was little lymphatic recovery of macromolecules from tumor tissue. The present finding is of potential value in macromolecular tumor therapeutics and diagnosis.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Gold nanoparticles in chemical and biological sensing.

                Bookmark

                Author and article information

                Journal
                Nanomaterials (Basel)
                Nanomaterials (Basel)
                nanomaterials
                Nanomaterials
                MDPI
                2079-4991
                02 December 2019
                December 2019
                : 9
                : 12
                : 1719
                Affiliations
                Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea; muniyandij@ 123456yahoo.com (M.J.); gsangiliyandi@ 123456yahoo.com (S.G.); qasimattock@ 123456gmail.com (M.Q.); pocachippo@ 123456gmail.com (M.-H.K.)
                Author notes
                [* ]Correspondence: jhkim541@ 123456konkuk.ac.kr ; Tel.: +82-2-450-3687
                [†]

                Those authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0001-9924-8433
                https://orcid.org/0000-0003-0279-5305
                https://orcid.org/0000-0003-4402-7064
                https://orcid.org/0000-0003-1232-5307
                Article
                nanomaterials-09-01719
                10.3390/nano9121719
                6956027
                31810256
                d7361f45-3ffc-4969-8179-cfd16f4d1bb0
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 06 November 2019
                : 25 November 2019
                Categories
                Review

                synthesis,characterization,biomedical applications,cytotoxicity,anticancer,combination therapy

                Comments

                Comment on this article