2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inkjet‐Printed rGO/binary Metal Oxide Sensor for Predictive Gas Sensing in a Mixed Environment

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          Machine learning for molecular and materials science

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Detection of individual gas molecules adsorbed on graphene

            The ultimate aim of any detection method is to achieve such a level of sensitivity that individual quanta of a measured entity can be resolved. In the case of chemical sensors, the quantum is one atom or molecule. Such resolution has so far been beyond the reach of any detection technique, including solid-state gas sensors hailed for their exceptional sensitivity. The fundamental reason limiting the resolution of such sensors is fluctuations due to thermal motion of charges and defects, which lead to intrinsic noise exceeding the sought-after signal from individual molecules, usually by many orders of magnitude. Here, we show that micrometre-size sensors made from graphene are capable of detecting individual events when a gas molecule attaches to or detaches from graphene's surface. The adsorbed molecules change the local carrier concentration in graphene one by one electron, which leads to step-like changes in resistance. The achieved sensitivity is due to the fact that graphene is an exceptionally low-noise material electronically, which makes it a promising candidate not only for chemical detectors but also for other applications where local probes sensitive to external charge, magnetic field or mechanical strain are required.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flexible Graphene-Based Wearable Gas and Chemical Sensors.

              Wearable electronics is expected to be one of the most active research areas in the next decade; therefore, nanomaterials possessing high carrier mobility, optical transparency, mechanical robustness and flexibility, lightweight, and environmental stability will be in immense demand. Graphene is one of the nanomaterials that fulfill all these requirements, along with other inherently unique properties and convenience to fabricate into different morphological nanostructures, from atomically thin single layers to nanoribbons. Graphene-based materials have also been investigated in sensor technologies, from chemical sensing to detection of cancer biomarkers. The progress of graphene-based flexible gas and chemical sensors in terms of material preparation, sensor fabrication, and their performance are reviewed here. The article provides a brief introduction to graphene-based materials and their potential applications in flexible and stretchable wearable electronic devices. The role of graphene in fabricating flexible gas sensors for the detection of various hazardous gases, including nitrogen dioxide (NO2), ammonia (NH3), hydrogen (H2), hydrogen sulfide (H2S), carbon dioxide (CO2), sulfur dioxide (SO2), and humidity in wearable technology, is discussed. In addition, applications of graphene-based materials are also summarized in detecting toxic heavy metal ions (Cd, Hg, Pb, Cr, Fe, Ni, Co, Cu, Ag), and volatile organic compounds (VOCs) including nitrobenzene, toluene, acetone, formaldehyde, amines, phenols, bisphenol A (BPA), explosives, chemical warfare agents, and environmental pollutants. The sensitivity, selectivity and strategies for excluding interferents are also discussed for graphene-based gas and chemical sensors. The challenges for developing future generation of flexible and stretchable sensors for wearable technology that would be usable for the Internet of Things (IoT) are also highlighted.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Advanced Functional Materials
                Adv Funct Materials
                Wiley
                1616-301X
                1616-3028
                June 2022
                March 20 2022
                June 2022
                : 32
                : 25
                : 2113348
                Affiliations
                [1 ]Cambridge Graphene Centre University of Cambridge Cambridge CB3 0FA UK
                [2 ]State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan Hubei 430070 P. R. China
                [3 ]Thin Film Materials Research Center Korea Research Institute of Chemical Technology (KRICT) 141 Gajeong‐ro, Yuseong‐gu Daejeon 34114 Republic of Korea
                Article
                10.1002/adfm.202113348
                d6be72e0-84d1-4e37-a348-3d0b0a9e9013
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article