5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      QM/MM Benchmarking of Cyanobacteriochrome Slr1393g3 Absorption Spectra

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cyanobacteriochromes are compact and spectrally diverse photoreceptor proteins that are promising candidates for biotechnological applications. Computational studies can contribute to an understanding at a molecular level of their wide spectral tuning and diversity. In this contribution, we benchmark methods to model a 110 nm shift in the UV/Vis absorption spectrum from a red- to a green-absorbing form of the cyanobacteriochrome Slr1393g3. Based on an assessment of semiempirical methods to describe the chromophore geometries of both forms in vacuo, we find that DFTB2+D leads to structures that are the closest to the reference method. The benchmark of the excited state calculations is based on snapshots from quantum mechanics/molecular mechanics molecular dynamics simulations. In our case, the methods RI-ADC(2) and sTD-DFT based on CAM-B3LYP ground state calculations perform the best, whereas no functional can be recommended to simulate the absorption spectra of both forms with time-dependent density functional theory. Furthermore, the difference in absorption for the lowest energy absorption maxima of both forms can already be modelled with optimized structures, but sampling is required to improve the shape of the absorption bands of both forms, in particular for the second band. This benchmark study can guide further computational studies, as it assesses essential components of a protocol to model the spectral tuning of both cyanobacteriochromes and the related phytochromes.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: not found
          • Article: not found

          Molpro: a general-purpose quantum chemistry program package

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements

              Several modifications that have been made to the NDDO core-core interaction term and to the method of parameter optimization are described. These changes have resulted in a more complete parameter optimization, called PM6, which has, in turn, allowed 70 elements to be parameterized. The average unsigned error (AUE) between calculated and reference heats of formation for 4,492 species was 8.0 kcal mol−1. For the subset of 1,373 compounds involving only the elements H, C, N, O, F, P, S, Cl, and Br, the PM6 AUE was 4.4 kcal mol−1. The equivalent AUE for other methods were: RM1: 5.0, B3LYP 6–31G*: 5.2, PM5: 5.7, PM3: 6.3, HF 6–31G*: 7.4, and AM1: 10.0 kcal mol−1. Several long-standing faults in AM1 and PM3 have been corrected and significant improvements have been made in the prediction of geometries. Figure Calculated structure of the complex ion [Ta6Cl12]2+ (footnote): Reference value in parenthesis Electronic supplementary material The online version of this article (doi:10.1007/s00894-007-0233-4) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                03 May 2019
                May 2019
                : 24
                : 9
                : 1720
                Affiliations
                Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; chwie@ 123456mail.upb.de
                Author notes
                [†]

                Current address: Physics Department, Universität Paderborn, 33098 Paderborn, Germany.

                Author information
                https://orcid.org/0000-0003-1286-0860
                https://orcid.org/0000-0001-8536-6869
                Article
                molecules-24-01720
                10.3390/molecules24091720
                6540152
                31058803
                d67f8447-f7b0-4ad2-8fac-0cfd9c14df5a
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 04 April 2019
                : 30 April 2019
                Categories
                Article

                phytochrome,cyanobacteriochrome,slr1393g3,spectral tuning,qm/mm,molecular dynamics,photochemistry,excited states

                Comments

                Comment on this article