9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of Silver Nanoparticles on Haemolysis, Platelet Function and Coagulation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Silver nanoparticles (Ag NPs) are increasingly used in biomedical applications because of their large antimicrobial spectrum. Data in the literature on the ability of Ag NPs to perform their desired function without eliciting undesirable effects on blood elements are very limited and contradictory. We studied the impact of Ag NPs on erythrocyte integrity, platelet function and blood coagulation. Erythrocyte integrity was assessed by spectrophotometric measurement of haemoglobin release. Platelet adhesion and aggregation was determined by light transmission aggregometry and scanning electron microscopy. The calibrated thrombin generation test was used to study the impact on coagulation cascade. We demonstrated that Ag NPs induced haemolysis. They also increase platelet adhesion without having any impact on platelet aggregation. Finally, they also had procoagulant potential. Bringing all data from these tests together, the no observed effect concentration is 5 μg/mL.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Nanosilver: a nanoproduct in medical application.

          Nanotechnology is a most promising field for generating new applications in medicine. However, only few nanoproducts are currently in use for medical purposes. A most prominent nanoproduct is nanosilver. Nanosilver particles are generally smaller than 100nm and contain 20-15,000 silver atoms. At nanoscale, silver exhibits remarkably unusual physical, chemical and biological properties. Due to its strong antibacterial activity, nanosilver coatings are used on various textiles but as well as coatings on certain implants. Further, nanosilver is used for treatment of wounds and burns or as a contraceptive and marketed as a water disinfectant and room spray. Thus, use of nanosilver is becoming more and more widespread in medicine and related applications and due to increasing exposure toxicological and environmental issues need to be raised. In sharp contrast to the attention paid to new applications of nanosilver, few studies provide only scant insights into the interaction of nanosilver particle with the human body after entering via different portals. Biodistribution, organ accumulation, degradation, possible adverse effects and toxicity are only slowly recognized and this review is focusing on major questions associated with the increased medical use of nanosilver and related nanomaterials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanosilver as a new generation of nanoproduct in biomedical applications.

            Nanosilver (NS), comprising silver nanoparticles, is attracting interest for a range of biomedical applications owing to its potent antibacterial activity. It has recently been demonstrated that NS has useful anti-inflammatory effects and improves wound healing, which could be exploited in developing better dressings for wounds and burns. The key to its broad-acting and potent antibacterial activity is the multifaceted mechanism by which NS acts on microbes. This is utilized in antibacterial coatings on medical devices to reduce nosocomial infection rates. Many new synthesis methods have emerged and are being evaluated for NS production for medical applications. NS toxicity is also critically discussed to reflect on potential concerns before widespread application in the medical field. Copyright © 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease.

              The efficient sequestration of hemoglobin by the red blood cell membrane and the presence of multiple hemoglobin clearance mechanisms suggest a critical need to prevent the buildup of this molecule in the plasma. A growing list of clinical manifestations attributed to hemoglobin release in a variety of acquired and iatrogenic hemolytic disorders suggests that hemolysis and hemoglobinemia should be considered as a novel mechanism of human disease. Pertinent scientific literature databases and references were searched through October 2004 using terms that encompassed various aspects of hemolysis, hemoglobin preparations, clinical symptoms associated with plasma hemoglobin, nitric oxide in hemolysis, anemia, pulmonary hypertension, paroxysmal nocturnal hemoglobinuria, and sickle-cell disease. Hemoglobin is released into the plasma from the erythrocyte during intravascular hemolysis in hereditary, acquired, and iatrogenic hemolytic conditions. When the capacity of protective hemoglobin-scavenging mechanisms has been saturated, levels of cell-free hemoglobin increase in the plasma, resulting in the consumption of nitric oxide and clinical sequelae. Nitric oxide plays a major role in vascular homeostasis and has been shown to be a critical regulator of basal and stress-mediated smooth muscle relaxation and vasomotor tone, endothelial adhesion molecule expression, and platelet activation and aggregation. Thus, clinical consequences of excessive cell-free plasma hemoglobin levels during intravascular hemolysis or the administration of hemoglobin preparations include dystonias involving the gastrointestinal, cardiovascular, pulmonary, and urogenital systems, as well as clotting disorders. Many of the clinical sequelae of intravascular hemolysis in a prototypic hemolytic disease, paroxysmal nocturnal hemoglobinuria, are readily explained by hemoglobin-mediated nitric oxide scavenging. A growing body of evidence supports the existence of a novel mechanism of human disease, namely, hemolysis-associated smooth muscle dystonia, vasculopathy, and endothelial dysfunction.
                Bookmark

                Author and article information

                Journal
                Nanobiomedicine (Rij)
                Nanobiomedicine (Rij)
                NAB
                spnab
                Nanobiomedicine
                SAGE Publications (Sage UK: London, England )
                1849-5435
                1 January 2014
                Jan-Dec 2014
                : 1
                : 4
                Affiliations
                [1 ] Department of Pharmacy, Namur Nanosafety Center (NNC), NAmur Research Institute for Life Sciences (NARILIS), NAmur MEdicine & Drug Innovation Center (NAMEDIC), Namur Thrombosis and Hemostasis Center (NTHC), University of Namur, Namur, Belgium
                [2 ] Hematology Department, CHU Dinant Godinne - UCL Namur, Belgium
                [3 ] Division Evaluators, DG PRE Authorisation, Federal Agency for Medicines and Health Products (FAMHP), Brussels, Belgium
                [4 ] Laboratory of Cellular Biochemistry and Biology, NNC, NARILIS, University of Namur, Namur, Belgium
                [5 ] Research Centre for the Physics of Matter and Radiation, NNC, NARILIS, University of Namur, Namur, Belgium
                Author notes
                [*] [* ] Corresponding author E-mail: julie.laloy@ 123456unamur.be
                [#]

                Equal contribution

                Article
                10.5772_59346
                10.5772/59346
                6029236
                30023015
                d56e9990-4c43-4526-acfb-90adc2f1c1ae
                © 2014 The Author(s). Licensee InTech.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 August 2014
                : 18 September 2014
                Categories
                Original Research Article
                Custom metadata
                January-December 2014

                silver nanoparticles,red blood cells,platelets,coagulation

                Comments

                Comment on this article