7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LACTB suppresses carcinogenesis in lung cancer and regulates the EMT pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lung cancer causes thousands of deaths worldwide every year, and present therapeutics show little benefit for advanced-stage patients. Researchers do not know why and how lung cancer begins. Lactamase β ( LACTB) is a tumor-suppressor in some cancers. However, its role in lung cancer is unknown. By analyzing the TCGA database and Kaplan-Meier Plotter database, LACTB was found to be downregulated in lung cancer tissues but the methylation level was increased. Patients with high LACTB expression exhibited improved survival. Then, in vitro assays demonstrated that LACTB overexpression inhibited cell migration and invasion, and induced apoptosis in H1299 and H1975 cells. Knockdown of LACTB caused the reverse effects. Moreover, a much higher apoptotic rate and more potent inhibitory effects on H1299 and H1975 cells were obtained when LACTB was combined with docetaxel. In addition, members of the epithelial-mesenchymal transition (EMT) signaling pathway were assessed using western blot analysis. The expression of E-cadherin was decreased while levels of N-cadherin and vimentin were increased after knockdown of LACTB in lung cancer cells. By contrast, overexpression of LACTB increased the level of E-cadherin but decreased N-cadherin and vimentin. Therefore, LACTB is a tumor suppressor in lung cancer that inhibits cell migration and invasion and induces cell apoptosis. Meanwhile, LACTB was found to strengthen the anticancer role of docetaxel and to suppress the EMT pathway in lung cancer.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer Statistics, 2021

            Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2017) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2018) were collected by the National Center for Health Statistics. In 2021, 1,898,160 new cancer cases and 608,570 cancer deaths are projected to occur in the United States. After increasing for most of the 20th century, the cancer death rate has fallen continuously from its peak in 1991 through 2018, for a total decline of 31%, because of reductions in smoking and improvements in early detection and treatment. This translates to 3.2 million fewer cancer deaths than would have occurred if peak rates had persisted. Long-term declines in mortality for the 4 leading cancers have halted for prostate cancer and slowed for breast and colorectal cancers, but accelerated for lung cancer, which accounted for almost one-half of the total mortality decline from 2014 to 2018. The pace of the annual decline in lung cancer mortality doubled from 3.1% during 2009 through 2013 to 5.5% during 2014 through 2018 in men, from 1.8% to 4.4% in women, and from 2.4% to 5% overall. This trend coincides with steady declines in incidence (2.2%-2.3%) but rapid gains in survival specifically for nonsmall cell lung cancer (NSCLC). For example, NSCLC 2-year relative survival increased from 34% for persons diagnosed during 2009 through 2010 to 42% during 2015 through 2016, including absolute increases of 5% to 6% for every stage of diagnosis; survival for small cell lung cancer remained at 14% to 15%. Improved treatment accelerated progress against lung cancer and drove a record drop in overall cancer mortality, despite slowing momentum for other common cancers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer

              Epithelial-mesenchymal transition (EMT) is a cellular programme that is known to be crucial for embryogenesis, wound healing and malignant progression. During EMT, cell-cell and cell-extracellular matrix interactions are remodelled, which leads to the detachment of epithelial cells from each other and the underlying basement membrane, and a new transcriptional programme is activated to promote the mesenchymal fate. In the context of neoplasias, EMT confers on cancer cells increased tumour-initiating and metastatic potential and a greater resistance to elimination by several therapeutic regimens. In this Review, we discuss recent findings on the mechanisms and roles of EMT in normal and neoplastic tissues, and the cell-intrinsic signals that sustain expression of this programme. We also highlight how EMT gives rise to a variety of intermediate cell states between the epithelial and the mesenchymal state, which could function as cancer stem cells. In addition, we describe the contributions of the tumour microenvironment in inducing EMT and the effects of EMT on the immunobiology of carcinomas.
                Bookmark

                Author and article information

                Journal
                Exp Ther Med
                Exp Ther Med
                ETM
                Experimental and Therapeutic Medicine
                D.A. Spandidos
                1792-0981
                1792-1015
                March 2022
                28 January 2022
                28 January 2022
                : 23
                : 3
                : 247
                Affiliations
                [1 ]Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
                [2 ]Department of Thoracic Surgery, Shangdong Public Health Clinical Center, Jinan, Shandong 250102, P.R. China
                [3 ]School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
                Author notes
                Correspondence to: Professor Yunshan Wang, Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, 105 Liberate Road, Jinan, Shandong 250013, P.R. China jnwyszxyy@ 123456163.com

                Dr Huanjie Li, School of Medicine, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China lihuanjie@ 123456sdu.edu.cn

                Article
                ETM-23-3-11172
                10.3892/etm.2022.11172
                8815028
                35222724
                d515c48e-abfb-4569-9411-a0cfe1a8fd15
                Copyright: © Xu et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 26 October 2021
                : 31 December 2021
                Funding
                Funding: This research was supported by grants from the Natural Science Foundation of Shandong Province (ZR2019PC056), the Technology Development Program of Jinan City (201907117), and the Shandong Medical and Health Science and Technology Development Fund (202102080591).
                Categories
                Articles

                Medicine
                lactb,lung cancer,epithelial-mesenchymal transition,docetaxel
                Medicine
                lactb, lung cancer, epithelial-mesenchymal transition, docetaxel

                Comments

                Comment on this article