13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      16-Aza-ent-beyerane and 16-Aza-ent-trachylobane: potent mechanism-based inhibitors of recombinant ent-kaurene synthase from Arabidopsis thaliana.

      Journal of the American Chemical Society
      Alkyl and Aryl Transferases, antagonists & inhibitors, metabolism, Arabidopsis, enzymology, Aza Compounds, chemistry, pharmacology, Crystallography, X-Ray, Enzyme Inhibitors, Magnetic Resonance Spectroscopy, Models, Molecular, Molecular Structure, Phosphates, Terpenes

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The secondary ent-beyeran-16-yl carbocation (7) is a key branch point intermediate in mechanistic schemes to rationalize the cyclic structures of many tetra- and pentacyclic diterpenes, including ent-beyerene, ent-kaurene, ent-trachylobane, and ent-atiserene, presumed precursors to >1000 known diterpenes. To evaluate these mechanistic hypotheses, we synthesized the heterocyclic analogues 16-aza-ent-beyerane (12) and 16-aza-ent-trachylobane (13) by means of Hg(II)- and Pb(IV)-induced cyclizations onto the Delta12 double bonds of tricyclic intermediates bearing carbamoylmethyl and aminomethyl groups at C-8. The 13,16-seco-16-norcarbamate (20a) was obtained from ent-beyeran-16-one oxime (17) by Beckmann fragmentation, hydrolysis, and Curtius rearrangement. The aza analogues inhibited recombinant ent-kaurene synthase from Arabidopsis thaliana (GST-rAtKS) with inhibition constants (IC50 = 1 x 10-7 and 1 x 10-6 M) similar in magnitude to the pseudo-binding constant of the bicyclic ent-copalyl diphosphate substrate (Km = 3 x 10-7 M). Large enhancements of binding affinities (IC50 = 4 x 10-9 and 2 x 10-8 M) were observed in the presence of 1 mM pyrophosphate, which is consistent with a tightly bound ent-beyeranyl+/pyrophosphate- ion pair intermediate in the cyclization-rearrangement catalyzed by this diterpene synthase. The weak inhibition (IC50 = 1 x 10-5 M) exhibited by ent-beyeran-16-exo-yl diphosphate (11) and its failure to undergo bridge rearrangement to kaurene appear to rule out the covalent diphosphate as a free intermediate. 16-Aza-ent-beyerane is proposed as an effective mimic for the ent-beyeran-16-yl carbocation with potential applications as an active site probe for the various ent-diterpene cyclases and as a novel, selective inhibitor of gibberellin biosynthesis in plants.

          Related collections

          Author and article information

          Comments

          Comment on this article