39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Significance

          Numerous modes of long-distance electrical signaling exist in nature. The best known of these, axonal conduction, requires one primary cell population, i.e., neurons. In contrast, the cell types that mediate leaf-to-leaf electrical signaling in wounded plants have not been defined rigorously. Using genetic approaches, we find that two distinct populations of cells in the vasculature matrix are needed to perform this function. Surprisingly, these cells do not contact each other directly. As we further defined the plant wound response, we found that wound-induced membrane depolarizations preceded large intravasculature calcium fluxes. We reveal a two-cell-type mode of electrical signaling in leaves and discuss parallels and differences in electrical signaling outside the plant kingdom.

          Abstract

          The identity of the cell files necessary for the leaf-to-leaf transmission of wound signals plants has been debated for decades. In Arabidopsis, wounding initiates the glutamate receptor-like (GLR)–dependent propagation of membrane depolarizations that lead to defense gene activation. Using a vein extraction procedure we found pools of GLR-fusion proteins in endomembranes in phloem sieve elements and/or in xylem contact cells. Strikingly, only double mutants that eliminated GLRs from both of these spatially separated cell types strongly attenuated leaf-to-leaf electrical signaling. glr3.3 mutants were also compromised in their defense against herbivores. Since wounding is known to cause increases in cytosolic calcium, we monitored electrical signals and Ca 2+ transients simultaneously. This revealed that wound-induced membrane depolarizations in the wild-type preceded cytosolic Ca 2+ maxima. The axial and radial distributions of calcium fluxes were differentially affected in each glr mutant. Resolving a debate over which cell types are necessary for electrical signaling between leaves, we show that phloem sieve elements and xylem contact cells function together in this process.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Growth-defense tradeoffs in plants: a balancing act to optimize fitness.

          Growth-defense tradeoffs are thought to occur in plants due to resource restrictions, which demand prioritization towards either growth or defense, depending on external and internal factors. These tradeoffs have profound implications in agriculture and natural ecosystems, as both processes are vital for plant survival, reproduction, and, ultimately, plant fitness. While many of the molecular mechanisms underlying growth and defense tradeoffs remain to be elucidated, hormone crosstalk has emerged as a major player in regulating tradeoffs needed to achieve a balance. In this review, we cover recent advances in understanding growth-defense tradeoffs in plants as well as what is known regarding the underlying molecular mechanisms. Specifically, we address evidence supporting the growth-defense tradeoff concept, as well as known interactions between defense signaling and growth signaling. Understanding the molecular basis of these tradeoffs in plants should provide a foundation for the development of breeding strategies that optimize the growth-defense balance to maximize crop yield to meet rising global food and biofuel demands. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging

            Imaging techniques for visualizing and analyzing precise morphology and gene expression patterns are essential for understanding biological processes during development in all organisms. With the aid of chemical screening, we developed a clearing method using chemical solutions, termed ClearSee, for deep imaging of morphology and gene expression in plant tissues. ClearSee rapidly diminishes chlorophyll autofluorescence while maintaining fluorescent protein stability. By adjusting the refractive index mismatch, whole-organ and whole-plant imaging can be performed by both confocal and two-photon excitation microscopy in ClearSee-treated samples. Moreover, ClearSee is applicable to multicolor imaging of fluorescent proteins to allow structural analysis of multiple gene expression. Given that ClearSee is compatible with staining by chemical dyes, the technique is useful for deep imaging in conjunction with genetic markers and for plant species not amenable to transgenic approaches. This method is useful for whole imaging for intact morphology and will help to accelerate the discovery of new phenomena in plant biological research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set.

              Plant membrane compartments and trafficking pathways are highly complex, and are often distinct from those of animals and fungi. Progress has been made in defining trafficking in plants using transient expression systems. However, many processes require a precise understanding of plant membrane trafficking in a developmental context, and in diverse, specialized cell types. These include defense responses to pathogens, regulation of transporter accumulation in plant nutrition or polar auxin transport in development. In all of these cases a central role is played by the endosomal membrane system, which, however, is the most divergent and ill-defined aspect of plant cell compartmentation. We have designed a new vector series, and have generated a large number of stably transformed plants expressing membrane protein fusions to spectrally distinct, fluorescent tags. We selected lines with distinct subcellular localization patterns, and stable, non-toxic expression. We demonstrate the power of this multicolor 'Wave' marker set for rapid, combinatorial analysis of plant cell membrane compartments, both in live-imaging and immunoelectron microscopy. Among other findings, our systematic co-localization analysis revealed that a class of plant Rab1-homologs has a much more extended localization than was previously assumed, and also localizes to trans-Golgi/endosomal compartments. Constructs that can be transformed into any genetic background or species, as well as seeds from transgenic Arabidopsis plants, will be freely available, and will promote rapid progress in diverse areas of plant cell biology.
                Bookmark

                Author and article information

                Journal
                Proc Natl Acad Sci U S A
                Proc. Natl. Acad. Sci. U.S.A
                pnas
                pnas
                PNAS
                Proceedings of the National Academy of Sciences of the United States of America
                National Academy of Sciences
                0027-8424
                1091-6490
                2 October 2018
                18 September 2018
                18 September 2018
                : 115
                : 40
                : 10178-10183
                Affiliations
                [1] aDepartment of Plant Molecular Biology, University of Lausanne , CH-1015 Lausanne, Switzerland
                Author notes
                2To whom correspondence should be addressed. Email: edward.farmer@ 123456unil.ch .

                Edited by Julian I. Schroeder, Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, and approved August 23, 2018 (received for review April 24, 2018)

                Author contributions: C.T.N., A.K., and E.E.F. designed research; C.T.N., A.K., S.S., and A.C. performed research; C.T.N., A.K., and E.E.F. analyzed data; and C.T.N., A.K., and E.E.F. wrote the paper.

                1C.T.N. and A.K. contributed equally to the work.

                Author information
                http://orcid.org/0000-0002-7613-0691
                Article
                201807049
                10.1073/pnas.1807049115
                6176584
                30228123
                d4d8c161-633c-45ef-955f-ad1a6ce88e54
                Copyright © 2018 the Author(s). Published by PNAS.

                This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

                History
                Page count
                Pages: 6
                Funding
                Funded by: Swiss National Science Foundation
                Award ID: 31003A-155960
                Award Recipient : Edward E Farmer
                Funded by: Swiss National Science Foundation
                Award ID: 31003A-138235
                Award Recipient : Edward E Farmer
                Categories
                Biological Sciences
                Plant Biology

                jasmonate,ricca’s factor,xylem,phloem,calcium
                jasmonate, ricca’s factor, xylem, phloem, calcium

                Comments

                Comment on this article