18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Mediterranean Benthic Herbivores Show Diverse Responses to Extreme Storm Disturbances

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Catastrophic storms have been observed to be one of the major elements in shaping the standing structure of marine benthic ecosystems. Yet, little is known about the effect of catastrophic storms on ecosystem processes. Specifically, herbivory is the main control mechanism of macrophyte communities in the Mediterranean, with two main key herbivores: the sea urchin Paracentrotus lividus and the fish Sarpa salpa. Consequently, the effects of extreme storm events on these two herbivores (at the population level and on their behaviour) may be critical for the functioning of the ecosystem. With the aim of filling this gap, we took advantage of two parallel studies that were conducted before, during and after an unexpected catastrophic storm event. Specifically, fish and sea urchin abundance were assessed before and after the storm in monitored fixed areas (one site for sea urchin assessment and 3 sites for fish visual transects). Additionally, we investigated the behavioural response to the disturbance of S. salpa fishes that had been tagged with acoustic transmitters. Given their low mobility, sea urchins were severely affected by the storm (ca. 50% losses) with higher losses in those patches with a higher density of sea urchins. This may be due to a limited availability of refuges within each patch. In contrast, fish abundance was not affected, as fish were able to move to protected areas (i.e. deeper) as a result of the high mobility of this species. Our results highlight that catastrophic storms differentially affect the two dominant macroherbivores of rocky macroalgal and seagrass systems due to differences in mobility and escaping strategies. This study emphasises that under catastrophic disturbances, the presence of different responses among the key herbivores of the system may be critical for the maintenance of the herbivory function.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Sea otters: their role in structuring nearshore communities.

          A comparison of western Aleutian Islands with and without sea otter populations shows that this species is important in determining littoral and sublittoral community structure. Sea otters control herbivorous invertebrate populations. Removal of sea otters causes increased herbivory and ultimately results in the destruction of macrophyte associations. The observations suggest that sea otter reestablishment indirectly affects island fauna associated with macrophyte primary productivity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global patterns in the impact of marine herbivores on benthic primary producers.

            Despite the importance of consumers in structuring communities, and the widespread assumption that consumption is strongest at low latitudes, empirical tests for global scale patterns in the magnitude of consumer impacts are limited. In marine systems, the long tradition of experimentally excluding herbivores in their natural environments allows consumer impacts to be quantified on global scales using consistent methodology. We present a quantitative synthesis of 613 marine herbivore exclusion experiments to test the influence of consumer traits, producer traits and the environment on the strength of herbivore impacts on benthic producers. Across the globe, marine herbivores profoundly reduced producer abundance (by 68% on average), with strongest effects in rocky intertidal habitats and the weakest effects on habitats dominated by vascular plants. Unexpectedly, we found little or no influence of latitude or mean annual water temperature. Instead, herbivore impacts differed most consistently among producer taxonomic and morphological groups. Our results show that grazing impacts on plant abundance are better predicted by producer traits than by large-scale variation in habitat or mean temperature, and that there is a previously unrecognised degree of phylogenetic conservatism in producer susceptibility to consumption. © 2012 Blackwell Publishing Ltd/CNRS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Marine reserves reestablish lost predatory interactions and cause community changes in rocky reefs.

              In the last decades, marine reserves have dramatically increased in number worldwide. Here I examined the potential of no-take marine reserves to reestablish lost predatory interactions and, in turn, cause community-wide changes in Mediterranean rocky reefs. Protected locations supported higher density and size of the most effective fish preying on sea urchins (the sea breams Diplodus sargus and D. vulgaris) than unprotected locations. Density of sea urchins (Paracentrotus lividus and Arbacia lixula) was lower at protected than at unprotected locations. Size structure of P. lividus was bimodal (a symptom of predation on medium-sized urchins) only at the protected locations. Coralline barrens were less extended at protected than at unprotected locations, whereas turf-forming and erect-branched algae showed an opposite pattern. Erect-unbranched and erect-calcified algae and conspicuous zoobenthic organisms did not show any pattern related to protection. Tethering experiments showed that predation impact on urchins was (1) higher at protected than at unprotected locations, (2) higher on P. lividus than on A. lixula, and (3) higher on medium-sized (2-3.5 cm test diameter) than large-sized (>3.5 cm) urchins. Sea urchins preyed on by fish in natural conditions were smaller at unprotected than at protected locations. The analysis of sea urchin remains found in Diplodus fish stomachs revealed that medium-sized P. lividus were the most frequently preyed upon urchins and that size range of consumed sea urchins expanded with increasing size of Diplodus fish. These results suggest that (1) depletion and size reduction of predatory fish caused by fishing alter patterns of predation on sea urchins, and that (2) fishing bans (e.g., within no-take marine reserves) may reestablish lost interactions among strongly interactive species in temperate rocky reefs with potential community-wide effects.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                7 May 2013
                : 8
                : 5
                : e62719
                Affiliations
                [1 ]Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Spain
                [2 ]Departament d’Ecologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
                [3 ]Nature Conservation Foundation, Mysore, India
                The Australian National University, Australia
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TA JR JP BH. Performed the experiments: JP AGR AG SF BH. Analyzed the data: JP AGR TA JR. Contributed reagents/materials/analysis tools: BH AGR TA JR. Wrote the paper: JP TA JR AG AGR SF BH.

                Article
                PONE-D-13-00446
                10.1371/journal.pone.0062719
                3647050
                23667512
                d4c827dd-880f-487e-9737-6367f746677c
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 December 2012
                : 25 March 2013
                Page count
                Pages: 10
                Funding
                This research has been funded by the Spanish Ministry of Science and Innovation (projects CTM2010-22273-C02-01 and 02). The Spanish Ministry of Education supported JP (scholarship AP2008-01601) and the Spanish National Research Council supported AG (scholarship JAEPre_08_00466). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Ecology
                Community Ecology
                Community Structure
                Ecological Environments
                Aquatic Environments
                Ecosystems
                Ecosystem Functioning
                Behavioral Ecology
                Biodiversity
                Conservation Science
                Marine Ecology
                Marine Biology
                Marine Conservation
                Marine Ecology
                Zoology
                Ichthyology
                Veterinary Science
                Animal Types
                Aquatic Animals

                Uncategorized
                Uncategorized

                Comments

                Comment on this article