9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Intestinal lymphatic transport for drug delivery

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intestinal lymphatic transport has been shown to be an absorptive pathway following oral administration of lipids and an increasing number of lipophilic drugs, which once absorbed, diffuse across the intestinal enterocyte and while in transit associate with secretable enterocyte lipoproteins. The chylomicron-associated drug is then secreted from the enterocyte into the lymphatic circulation, rather than the portal circulation, thus avoiding the metabolically-active liver, but still ultimately returning to the systemic circulation. Because of this parallel and potentially alternative absorptive pathway, first-pass metabolism can be reduced while increasing lymphatic drug exposure, which opens the potential for novel therapeutic modalities and allows the implementation of lipid-based drug delivery systems. This review discusses the physiological features of the lymphatics, enterocyte uptake and metabolism, links between drug transport and lipid digestion/re-acylation, experimental model ( in vivo, in vitro, and in silico) of lymphatic transport, and the design of lipid- or prodrug-based drug delivery systems for enhancing lymphatic drug transport.

          Related collections

          Most cited references234

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals.

          In addition to metabolic differences, the anatomical, physiological, and biochemical differences in the gastrointestinal (G.I.) tract of the human and common laboratory animals can cause significant variation in drug absorption from the oral route. Among the physiological factors, pH, bile, pancreatic juice, and mucus and fluid volume and content can modify dissolution rates, solubility, transit times, and membrane transport of drug molecules. The microbial content of the G.I. tract can significantly affect the reductive metabolism and enterohepatic circulation of drugs and colonic delivery of formulations. The transit time of dosage forms can be significantly different between species due to different dimensions and propulsive activities of the G.I. tract. The lipid/protein composition of the enterocyte membrane along the G.I. tract can alter binding and passive, active, and carrier-mediated transport of drugs. The location and number of Peyer's patches can also be important in the absorption of large molecules and particulate matter. While small animals, rats, mice, guinea pigs, and rabbits, are most suitable for determining the mechanism of drug absorption and bioavailability values from powder or solution formulations, larger animals, dogs, pigs, and monkeys, are used to assess absorption from formulations. The understanding of physiological, anatomical, and biochemical differences between the G.I. tracts of different animal species can lead to the selection of the correct animal model to mimic the bioavailability of compounds in the human. This article reviews the anatomical, physiological, and biochemical differences between the G.I. tracts of humans and commonly used laboratory animals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters.

            In healthy individuals, acute changes in cholesterol intake produce modest changes in plasma cholesterol levels. A striking exception occurs in sitosterolemia, an autosomal recessive disorder characterized by increased intestinal absorption and decreased biliary excretion of dietary sterols, hypercholesterolemia, and premature coronary atherosclerosis. We identified seven different mutations in two adjacent, oppositely oriented genes that encode new members of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter family (six mutations in ABCG8 and one in ABCG5) in nine patients with sitosterolemia. The two genes are expressed at highest levels in liver and intestine and, in mice, cholesterol feeding up-regulates expressions of both genes. These data suggest that ABCG5 and ABCG8 normally cooperate to limit intestinal absorption and to promote biliary excretion of sterols, and that mutated forms of these transporters predispose to sterol accumulation and atherosclerosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human UDP-glucuronosyltransferases: metabolism, expression, and disease.

              In vertebrates, the glucuronidation of small lipophilic agents is catalyzed by the endoplasmic reticulum UDP-glucuronosyltransferases (UGTs). This metabolic pathway leads to the formation of water-soluble metabolites originating from normal dietary processes, cellular catabolism, or exposure to drugs and xenobiotics. This classic detoxification process, which led to the discovery nearly 50 years ago of the cosubstrate UDP-glucuronic acid (19), is now known to be carried out by 15 human UGTs. Characterization of the individual gene products using cDNA expression experiments has led to the identification of over 350 individual compounds that serve as substrates for this superfamily of proteins. This data, coupled with the introduction of sophisticated RNA detection techniques designed to elucidate patterns of gene expression of the UGT superfamily in human liver and extrahepatic tissues of the gastrointestinal tract, has aided in understanding the contribution of glucuronidation toward epithelial first-pass metabolism. In addition, characterization of the UGT1A locus and genetic studies directed at understanding the role of bilirubin glucuronidation and the biochemical basis of the clinical symptoms found in unconjugated hyperbilirubinemia have uncovered the structural gene polymorphisms associated with Crigler-Najjar's and Gilbert's syndrome. The role of the UGTs in metabolism and different disease states in humans is the topic of this review.
                Bookmark

                Author and article information

                Contributors
                Journal
                Adv Drug Deliv Rev
                Adv. Drug Deliv. Rev
                Advanced Drug Delivery Reviews
                Elsevier B.V.
                0169-409X
                1872-8294
                13 June 2011
                10 September 2011
                13 June 2011
                : 63
                : 10
                : 923-942
                Affiliations
                Pharmaceutical Sciences and Drug Metabolism, Schering-Plough Research Institute, 2015 Galloping Hill Rd., Kenilworth, NJ 07033, USA
                Author notes
                [* ]Corresponding author. jaime.yanez@ 123456alconlabs.com
                [1]

                Current affiliation: Drug Metabolism and Pharmacokinetics, Alcon Research, Ltd., 6201 South Freeway, Mail Stop: R3-26, Forth Worth, TX 76134-2099, USA. Tel.: +1 817 568 7705; fax: +1 817 551 9854.

                [2]

                The authors contributed equally for the writing and editing of this manuscript.

                [3]

                Current affiliation: Drug Metabolism and Pharmacokinetics, Millennium Pharmaceuticals Inc., 35 Landsdowne St., Cambridge, MA 02139, USA.

                Article
                S0169-409X(11)00141-4
                10.1016/j.addr.2011.05.019
                7126116
                21689702
                d4637f1b-55ca-47e0-9409-25d6dc0ed751
                Copyright © 2011 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 25 September 2009
                : 26 January 2011
                Categories
                Article

                drugs,lymph,absorption,transport,intestine,formulation,lipid,oral,delivery,chylomicron

                Comments

                Comment on this article