6
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparing machine learning algorithms for predicting COVID-19 mortality

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The coronavirus disease (COVID-19) hospitalized patients are always at risk of death. Machine learning (ML) algorithms can be used as a potential solution for predicting mortality in COVID-19 hospitalized patients. So, our study aimed to compare several ML algorithms to predict the COVID-19 mortality using the patient’s data at the first time of admission and choose the best performing algorithm as a predictive tool for decision-making.

          Methods

          In this study, after feature selection, based on the confirmed predictors, information about 1500 eligible patients (1386 survivors and 144 deaths) obtained from the registry of Ayatollah Taleghani Hospital, Abadan city, Iran, was extracted. Afterwards, several ML algorithms were trained to predict COVID-19 mortality. Finally, to assess the models’ performance, the metrics derived from the confusion matrix were calculated.

          Results

          The study participants were 1500 patients; the number of men was found to be higher than that of women (836 vs. 664) and the median age was 57.25 years old (interquartile 18–100). After performing the feature selection, out of 38 features, dyspnea, ICU admission, and oxygen therapy were found as the top three predictors. Smoking, alanine aminotransferase, and platelet count were found to be the three lowest predictors of COVID-19 mortality. Experimental results demonstrated that random forest (RF) had better performance than other ML algorithms with accuracy, sensitivity, precision, specificity, and receiver operating characteristic (ROC) of 95.03%, 90.70%, 94.23%, 95.10%, and 99.02%, respectively.

          Conclusion

          It was found that ML enables a reasonable level of accuracy in predicting the COVID-19 mortality. Therefore, ML-based predictive models, particularly the RF algorithm, potentially facilitate identifying the patients who are at high risk of mortality and inform proper interventions by the clinicians.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges

          Highlights • Emergence of 2019 novel coronavirus (2019-nCoV) in China has caused a large global outbreak and major public health issue. • At 9 February 2020, data from the WHO has shown >37 000 confirmed cases in 28 countries (>99% of cases detected in China). • 2019-nCoV is spread by human-to-human transmission via droplets or direct contact. • Infection estimated to have an incubation period of 2–14 days and a basic reproduction number of 2.24–3.58. • Controlling infection to prevent spread of the 2019-nCoV is the primary intervention being used.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study

            Summary Background A cluster of patients with coronavirus disease 2019 (COVID-19) pneumonia caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were successively reported in Wuhan, China. We aimed to describe the CT findings across different timepoints throughout the disease course. Methods Patients with COVID-19 pneumonia (confirmed by next-generation sequencing or RT-PCR) who were admitted to one of two hospitals in Wuhan and who underwent serial chest CT scans were retrospectively enrolled. Patients were grouped on the basis of the interval between symptom onset and the first CT scan: group 1 (subclinical patients; scans done before symptom onset), group 2 (scans done ≤1 week after symptom onset), group 3 (>1 week to 2 weeks), and group 4 (>2 weeks to 3 weeks). Imaging features and their distribution were analysed and compared across the four groups. Findings 81 patients admitted to hospital between Dec 20, 2019, and Jan 23, 2020, were retrospectively enrolled. The cohort included 42 (52%) men and 39 (48%) women, and the mean age was 49·5 years (SD 11·0). The mean number of involved lung segments was 10·5 (SD 6·4) overall, 2·8 (3·3) in group 1, 11·1 (5·4) in group 2, 13·0 (5·7) in group 3, and 12·1 (5·9) in group 4. The predominant pattern of abnormality observed was bilateral (64 [79%] patients), peripheral (44 [54%]), ill-defined (66 [81%]), and ground-glass opacification (53 [65%]), mainly involving the right lower lobes (225 [27%] of 849 affected segments). In group 1 (n=15), the predominant pattern was unilateral (nine [60%]) and multifocal (eight [53%]) ground-glass opacities (14 [93%]). Lesions quickly evolved to bilateral (19 [90%]), diffuse (11 [52%]) ground-glass opacity predominance (17 [81%]) in group 2 (n=21). Thereafter, the prevalence of ground-glass opacities continued to decrease (17 [57%] of 30 patients in group 3, and five [33%] of 15 in group 4), and consolidation and mixed patterns became more frequent (12 [40%] in group 3, eight [53%] in group 4). Interpretation COVID-19 pneumonia manifests with chest CT imaging abnormalities, even in asymptomatic patients, with rapid evolution from focal unilateral to diffuse bilateral ground-glass opacities that progressed to or co-existed with consolidations within 1–3 weeks. Combining assessment of imaging features with clinical and laboratory findings could facilitate early diagnosis of COVID-19 pneumonia. Funding None.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal

              Abstract Objective To review and critically appraise published and preprint reports of prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected infection, for prognosis of patients with covid-19, and for detecting people in the general population at risk of being admitted to hospital for covid-19 pneumonia. Design Rapid systematic review and critical appraisal. Data sources PubMed and Embase through Ovid, Arxiv, medRxiv, and bioRxiv up to 24 March 2020. Study selection Studies that developed or validated a multivariable covid-19 related prediction model. Data extraction At least two authors independently extracted data using the CHARMS (critical appraisal and data extraction for systematic reviews of prediction modelling studies) checklist; risk of bias was assessed using PROBAST (prediction model risk of bias assessment tool). Results 2696 titles were screened, and 27 studies describing 31 prediction models were included. Three models were identified for predicting hospital admission from pneumonia and other events (as proxy outcomes for covid-19 pneumonia) in the general population; 18 diagnostic models for detecting covid-19 infection (13 were machine learning based on computed tomography scans); and 10 prognostic models for predicting mortality risk, progression to severe disease, or length of hospital stay. Only one study used patient data from outside of China. The most reported predictors of presence of covid-19 in patients with suspected disease included age, body temperature, and signs and symptoms. The most reported predictors of severe prognosis in patients with covid-19 included age, sex, features derived from computed tomography scans, C reactive protein, lactic dehydrogenase, and lymphocyte count. C index estimates ranged from 0.73 to 0.81 in prediction models for the general population (reported for all three models), from 0.81 to more than 0.99 in diagnostic models (reported for 13 of the 18 models), and from 0.85 to 0.98 in prognostic models (reported for six of the 10 models). All studies were rated at high risk of bias, mostly because of non-representative selection of control patients, exclusion of patients who had not experienced the event of interest by the end of the study, and high risk of model overfitting. Reporting quality varied substantially between studies. Most reports did not include a description of the study population or intended use of the models, and calibration of predictions was rarely assessed. Conclusion Prediction models for covid-19 are quickly entering the academic literature to support medical decision making at a time when they are urgently needed. This review indicates that proposed models are poorly reported, at high risk of bias, and their reported performance is probably optimistic. Immediate sharing of well documented individual participant data from covid-19 studies is needed for collaborative efforts to develop more rigorous prediction models and validate existing ones. The predictors identified in included studies could be considered as candidate predictors for new models. Methodological guidance should be followed because unreliable predictions could cause more harm than benefit in guiding clinical decisions. Finally, studies should adhere to the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) reporting guideline. Systematic review registration Protocol https://osf.io/ehc47/, registration https://osf.io/wy245.
                Bookmark

                Author and article information

                Contributors
                h.kazemi@abadanums.ac.ir
                Journal
                BMC Med Inform Decis Mak
                BMC Med Inform Decis Mak
                BMC Medical Informatics and Decision Making
                BioMed Central (London )
                1472-6947
                4 January 2022
                4 January 2022
                2022
                : 22
                : 2
                Affiliations
                [1 ]GRID grid.412105.3, ISNI 0000 0001 2092 9755, Medical Informatics Research Center, Institute for Futures Studies in Health, , Kerman University of Medical Sciences, ; Kerman, Iran
                [2 ]GRID grid.449129.3, ISNI 0000 0004 0611 9408, Department of Health Information Technology, School of Paramedical, , Ilam University of Medical Sciences, ; Ilam, Iran
                [3 ]GRID grid.412105.3, ISNI 0000 0001 2092 9755, Department of Health Information Management, School of Health Management and Information Sciences, , Kerman University of Medical Sciences, ; Kerman, Iran
                [4 ]Department of Health Information Technology, Abadan University of Medical Sciences, Abadan, Iran
                [5 ]Student Research Committee, Abadan University of Medical Sciences, Abadan, Iran
                Article
                1742
                10.1186/s12911-021-01742-0
                8724649
                34983496
                d45ee1e3-ddb4-4e6a-9462-872c54512c29
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 26 May 2021
                : 28 December 2021
                Categories
                Research
                Custom metadata
                © The Author(s) 2022

                Bioinformatics & Computational biology
                covid-19,coronavirus,machine learning,artificial intelligence,prediction hospital mortality

                Comments

                Comment on this article