22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Necroptosis in development and diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review by Shan et al. discusses necroptosis, a form of regulated necrotic cell death mediated by RIPK1 kinase activity, RIPK3, and MLKL, which can be activated under apoptosis-deficient conditions. Both necroptosis and apoptosis can be activated in response to various mutations that result in the abortion of defective embryos and during human inflammatory and neurodegenerative pathologies.

          Abstract

          Necroptosis, a form of regulated necrotic cell death mediated by RIPK1 (receptor-interacting protein kinase 1) kinase activity, RIPK3, and MLKL (mixed-lineage kinase domain-like pseudokinase), can be activated under apoptosis-deficient conditions. Modulating the activation of RIPK1 by ubiquitination and phosphorylation is critical to control both necroptosis and apoptosis. Mutant mice with kinase-dead RIPK1 or RIPK3 and MLKL deficiency show no detrimental phenotype in regard to development and adult homeostasis. However, necroptosis and apoptosis can be activated in response to various mutations that result in the abortion of the defective embryos and human inflammatory and neurodegenerative pathologies. RIPK1 inhibition represents a key therapeutic strategy for treatment of diseases where blocking both necroptosis and apoptosis can be beneficial.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: found
          • Article: not found

          Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes.

          Apoptosis induced by TNF-receptor I (TNFR1) is thought to proceed via recruitment of the adaptor FADD and caspase-8 to the receptor complex. TNFR1 signaling is also known to activate the transcription factor NF-kappa B and promote survival. The mechanism by which this decision between cell death and survival is arbitrated is not clear. We report that TNFR1-induced apoptosis involves two sequential signaling complexes. The initial plasma membrane bound complex (complex I) consists of TNFR1, the adaptor TRADD, the kinase RIP1, and TRAF2 and rapidly signals activation of NF-kappa B. In a second step, TRADD and RIP1 associate with FADD and caspase-8, forming a cytoplasmic complex (complex II). When NF-kappa B is activated by complex I, complex II harbors the caspase-8 inhibitor FLIP(L) and the cell survives. Thus, TNFR1-mediated-signal transduction includes a checkpoint, resulting in cell death (via complex II) in instances where the initial signal (via complex I, NF-kappa B) fails to be activated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase.

            The receptor-interacting serine-threonine kinase 3 (RIP3) is a key signaling molecule in the programmed necrosis (necroptosis) pathway. This pathway plays important roles in a variety of physiological and pathological conditions, including development, tissue damage response, and antiviral immunity. Here, we report the identification of a small molecule called (E)-N-(4-(N-(3-methoxypyrazin-2-yl)sulfamoyl)phenyl)-3-(5-nitrothiophene-2-yl)acrylamide--hereafter referred to as necrosulfonamide--that specifically blocks necrosis downstream of RIP3 activation. An affinity probe derived from necrosulfonamide and coimmunoprecipitation using anti-RIP3 antibodies both identified the mixed lineage kinase domain-like protein (MLKL) as the interacting target. MLKL was phosphorylated by RIP3 at the threonine 357 and serine 358 residues, and these phosphorylation events were critical for necrosis. Treating cells with necrosulfonamide or knocking down MLKL expression arrested necrosis at a specific step at which RIP3 formed discrete punctae in cells. These findings implicate MLKL as a key mediator of necrosis signaling downstream of the kinase RIP3. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury.

              The mechanism of apoptosis has been extensively characterized over the past decade, but little is known about alternative forms of regulated cell death. Although stimulation of the Fas/TNFR receptor family triggers a canonical 'extrinsic' apoptosis pathway, we demonstrated that in the absence of intracellular apoptotic signaling it is capable of activating a common nonapoptotic death pathway, which we term necroptosis. We showed that necroptosis is characterized by necrotic cell death morphology and activation of autophagy. We identified a specific and potent small-molecule inhibitor of necroptosis, necrostatin-1, which blocks a critical step in necroptosis. We demonstrated that necroptosis contributes to delayed mouse ischemic brain injury in vivo through a mechanism distinct from that of apoptosis and offers a new therapeutic target for stroke with an extended window for neuroprotection. Our study identifies a previously undescribed basic cell-death pathway with potentially broad relevance to human pathologies.
                Bookmark

                Author and article information

                Journal
                Genes Dev
                Genes Dev
                genesdev
                genesdev
                GAD
                Genes & Development
                Cold Spring Harbor Laboratory Press
                0890-9369
                1549-5477
                1 March 2018
                : 32
                : 5-6
                : 327-340
                Affiliations
                [1 ]Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PuDong District, Shanghai 201203, China;
                [2 ]Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
                Author notes
                [3]

                These authors contributed equally to this work.

                Article
                8711660
                10.1101/gad.312561.118
                5900707
                29593066
                d3bf8109-e7b0-4058-af4d-58c5330d0655
                © 2018 Shan et al.; Published by Cold Spring Harbor Laboratory Press

                This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

                History
                Page count
                Pages: 14
                Funding
                Funded by: National Key R&D Program of China
                Award ID: 2016YFA0501900
                Funded by: China National Natural Science Foundation , open-funder-registry 10.13039/501100001809;
                Award ID: 31530041
                Funded by: Chinese Academy of Sciences , open-funder-registry 10.13039/501100002367;
                Funded by: National Institute of Neurological Disorders and Stroke , open-funder-registry 10.13039/100000065;
                Award ID: 1R01NS082257
                Funded by: National Institute on Aging , open-funder-registry 10.13039/100000049;
                Award ID: 1R01AG047231
                Award ID: RF1AG055521
                Funded by: Natural Science Foundation of Shanghai , open-funder-registry 10.13039/100007219;
                Award ID: 16ZR1443900
                Categories
                17
                Review

                apoptosis,mlkl,necroptosis,ripk1,ripk3
                apoptosis, mlkl, necroptosis, ripk1, ripk3

                Comments

                Comment on this article