There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Inability to efficiently implement high-throughput field phenotyping is increasingly perceived as a key component that limits genetic gain in breeding programs. Field phenotyping must be integrated into a wider context than just choosing the correct selection traits, deployment tools, evaluation platforms, or basic data-management methods. Phenotyping means more than conducting such activities in a resource-efficient manner; it also requires appropriate trial management and spatial variability handling, definition of key constraining conditions prevalent in the target population of environments, and the development of more comprehensive data management, including crop modeling. This review will provide a wide perspective on how field phenotyping is best implemented. It will also outline how to bridge the gap between breeders and ‘phenotypers’ in an effective manner.
Since whole-genome sequencing of many crops has been achieved, crop functional genomics studies have stepped into the big-data and high-throughput era. However, acquisition of large-scale phenotypic data has become one of the major bottlenecks hindering crop breeding and functional genomics studies. Nevertheless, recent technological advances provide us potential solutions to relieve this bottleneck and to explore advanced methods for large-scale phenotyping data acquisition and processing in the coming years. In this article, we review the major progress on high-throughput phenotyping in controlled environments and field conditions as well as its use for post-harvest yield and quality assessment in the past decades. We then discuss the latest multi-omics research combining high-throughput phenotyping with genetic studies. Finally, we propose some conceptual challenges and provide our perspectives on how to bridge the phenotype-genotype gap. It is no doubt that accurate high-throughput phenotyping will accelerate plant genetic improvements and promote the next green revolution in crop breeding.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.