28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lung ageing and COPD: is there a role for ageing in abnormal tissue repair?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide, with increasing prevalence, in particular in the elderly. COPD is characterised by abnormal tissue repair resulting in (small) airways disease and emphysema. There is accumulating evidence that ageing hallmarks are prominent features of COPD. These ageing hallmarks have been described in different subsets of COPD patients, in different lung compartments and also in a variety of cell types, and thus might contribute to different COPD phenotypes. A better understanding of the main differences and similarities between normal lung ageing and the pathology of COPD may improve our understanding of the mechanisms driving COPD pathology, in particular in those patients that develop the most severe form of COPD at a relatively young age, i.e. severe early-onset COPD patients.

          In this review, after introducing the main concepts of lung ageing and COPD pathology, we focus on the role of (abnormal) ageing in lung remodelling and repair in COPD. We discuss the current evidence for the involvement of ageing hallmarks in these pathological features of COPD. We also highlight potential novel treatment strategies and opportunities for future research based on our current knowledge of abnormal lung ageing in COPD.

          Abstract

          Several ageing hallmarks are present in COPD and indicate a role for (abnormal) ageing in tissue repair in COPD http://ow.ly/OLtW30gE3ct

          Related collections

          Most cited references153

          • Record: found
          • Abstract: found
          • Article: found

          The Hallmarks of Aging

          Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases. Aging research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of aging is controlled, at least to some extent, by genetic pathways and biochemical processes conserved in evolution. This Review enumerates nine tentative hallmarks that represent common denominators of aging in different organisms, with special emphasis on mammalian aging. These hallmarks are: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. A major challenge is to dissect the interconnectedness between the candidate hallmarks and their relative contributions to aging, with the final goal of identifying pharmaceutical targets to improve human health during aging, with minimal side effects. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA methylation age of human tissues and cell types

            Background It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure. Results I developed a multi-tissue predictor of age that allows one to estimate the DNA methylation age of most tissues and cell types. The predictor, which is freely available, was developed using 8,000 samples from 82 Illumina DNA methylation array datasets, encompassing 51 healthy tissues and cell types. I found that DNA methylation age has the following properties: first, it is close to zero for embryonic and induced pluripotent stem cells; second, it correlates with cell passage number; third, it gives rise to a highly heritable measure of age acceleration; and, fourth, it is applicable to chimpanzee tissues. Analysis of 6,000 cancer samples from 32 datasets showed that all of the considered 20 cancer types exhibit significant age acceleration, with an average of 36 years. Low age-acceleration of cancer tissue is associated with a high number of somatic mutations and TP53 mutations, while mutations in steroid receptors greatly accelerate DNA methylation age in breast cancer. Finally, I characterize the 353 CpG sites that together form an aging clock in terms of chromatin states and tissue variance. Conclusions I propose that DNA methylation age measures the cumulative effect of an epigenetic maintenance system. This novel epigenetic clock can be used to address a host of questions in developmental biology, cancer and aging research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Susceptibility to exacerbation in chronic obstructive pulmonary disease.

              Although we know that exacerbations are key events in chronic obstructive pulmonary disease (COPD), our understanding of their frequency, determinants, and effects is incomplete. In a large observational cohort, we tested the hypothesis that there is a frequent-exacerbation phenotype of COPD that is independent of disease severity. We analyzed the frequency and associations of exacerbation in 2138 patients enrolled in the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) study. Exacerbations were defined as events that led a care provider to prescribe antibiotics or corticosteroids (or both) or that led to hospitalization (severe exacerbations). Exacerbation frequency was observed over a period of 3 years. Exacerbations became more frequent (and more severe) as the severity of COPD increased; exacerbation rates in the first year of follow-up were 0.85 per person for patients with stage 2 COPD (with stage defined in accordance with Global Initiative for Chronic Obstructive Lung Disease [GOLD] stages), 1.34 for patients with stage 3, and 2.00 for patients with stage 4. Overall, 22% of patients with stage 2 disease, 33% with stage 3, and 47% with stage 4 had frequent exacerbations (two or more in the first year of follow-up). The single best predictor of exacerbations, across all GOLD stages, was a history of exacerbations. The frequent-exacerbation phenotype appeared to be relatively stable over a period of 3 years and could be predicted on the basis of the patient's recall of previous treated events. In addition to its association with more severe disease and prior exacerbations, the phenotype was independently associated with a history of gastroesophageal reflux or heartburn, poorer quality of life, and elevated white-cell count. Although exacerbations become more frequent and more severe as COPD progresses, the rate at which they occur appears to reflect an independent susceptibility phenotype. This has implications for the targeting of exacerbation-prevention strategies across the spectrum of disease severity. (Funded by GlaxoSmithKline; ClinicalTrials.gov number, NCT00292552.)
                Bookmark

                Author and article information

                Journal
                Eur Respir Rev
                Eur Respir Rev
                ERR
                errev
                European Respiratory Review
                European Respiratory Society
                0905-9180
                1600-0617
                31 December 2017
                06 December 2017
                : 26
                : 146
                : 170073
                Affiliations
                [1 ]University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands
                [2 ]University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
                [3 ]University of Groningen, University Medical Center Groningen, Dept of Epidemiology, Groningen, The Netherlands
                [4 ]Comprehensive Pneumology Center, Helmholtz Zentrum München, University Hospital of the Ludwig Maximilians University, Munich, Germany
                [5 ]Division of Pulmonary Sciences and Critical Care Medicine, Dept of Medicine, University of Colorado, Denver, CO, USA
                [6 ]Both authors contributed equally
                Author notes
                Corry-Anke Brandsma, University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Hanzeplein 1, 9713 GZ Groningen, The Netherlands. E-mail: c.a.brandsma@ 123456umcg.nl
                Article
                ERR-0073-2017
                10.1183/16000617.0073-2017
                9488745
                29212834
                d23ba4c0-1d13-426b-bc42-8f737ebf72c7
                Copyright ©ERS 2017.

                ERR articles are open access and distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0.

                History
                : 23 June 2017
                : 20 September 2017
                Categories
                Series
                Pathology for the Clinician
                1
                15

                Comments

                Comment on this article