0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced Recovery After Surgery Protocols in Obese Gynecological Oncology Patients: A Single-Center Experience

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          The aim of this study is to present our experience and evaluate the safety and outcomes of the implementation of Enhanced Recovery After Surgery (ERAS) protocols in obese patients who underwent surgery for suspected or confirmed gynecological malignancies.

          Method

          From January 2020 to September 2021, 217 patients underwent laparotomy for a confirmed or suspected gynecological malignancy following a 19-element ERAS pathway. The patients were divided into two groups: obese (BMI ≥ 30 kg/m 2, n = 104) and non-obese (BMI < 30, n = 113). Both groups were treated with a 19-element ERAS protocol.

          Results

          After dividing the 217 patients into two groups, significantly more comorbidities were observed in the obese group (diabetes mellitus: 23% vs. 8%, p = 0.004; ASA score grade 3: 25.0% vs. 6.2%, p < 0.001), as well as higher rates of endometrial cancer (51.9% vs. 17.7%, p < 0.001) compared to the non-obese group. The overall ERAS compliance rates when matched element by element were similar. Postoperatively, complication rates of all grades were significantly higher in the obese group (46.1% vs. 27.4%, p < 0.001) without differences in the length of stay, readmission, and reoperation rates.

          Conclusion

          In this retrospective study, we showed that obese gynecological oncology patients can be safely managed with ERAS protocols perioperatively while potentially minimizing the adverse outcomes in these otherwise high-risk patients.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

          Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalisability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. 18 items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the Web sites of PLoS Medicine, Annals of Internal Medicine, and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Clavien-Dindo classification of surgical complications: five-year experience.

            The lack of consensus on how to define and grade adverse postoperative events has greatly hampered the evaluation of surgical procedures. A new classification of complications, initiated in 1992, was updated 5 years ago. It is based on the type of therapy needed to correct the complication. The principle of the classification was to be simple, reproducible, flexible, and applicable irrespective of the cultural background. The aim of the current study was to critically evaluate this classification from the perspective of its use in the literature, by assessing interobserver variability in grading complex complication scenarios and to correlate the classification grades with patients', nurses', and doctors' perception. Reports from the literature using the classification system were systematically analyzed. Next, 11 scenarios illustrating difficult cases were prepared to develop a consensus on how to rank the various complications. Third, 7 centers from different continents, having routinely used the classification, independently assessed the 11 scenarios. An agreement analysis was performed to test the accuracy and reliability of the classification. Finally, the perception of the severity was tested in patients, nurses, and physicians by presenting 30 scenarios, each illustrating a specific grade of complication. We noted a dramatic increase in the use of the classification in many fields of surgery. About half of the studies used the contracted form, whereas the rest used the full range of grading. Two-thirds of the publications avoided subjective terms such as minor or major complications. The study of 11 difficult cases among various centers revealed a high degree of agreement in identifying and ranking complications (89% agreement), and enabled a better definition of unclear situations. Each grade of complications significantly correlated with the perception by patients, nurses, and physicians (P < 0.05, Kruskal-Wallis test). This 5-year evaluation provides strong evidence that the classification is valid and applicable worldwide in many fields of surgery. No modification in the general principle of classification is warranted in view of the use in ongoing publications and trials. Subjective, inaccurate, or confusing terms such as "minor or major" should be removed from the surgical literature.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants

              Summary Background Underweight and severe and morbid obesity are associated with highly elevated risks of adverse health outcomes. We estimated trends in mean body-mass index (BMI), which characterises its population distribution, and in the prevalences of a complete set of BMI categories for adults in all countries. Methods We analysed, with use of a consistent protocol, population-based studies that had measured height and weight in adults aged 18 years and older. We applied a Bayesian hierarchical model to these data to estimate trends from 1975 to 2014 in mean BMI and in the prevalences of BMI categories (<18·5 kg/m2 [underweight], 18·5 kg/m2 to <20 kg/m2, 20 kg/m2 to <25 kg/m2, 25 kg/m2 to <30 kg/m2, 30 kg/m2 to <35 kg/m2, 35 kg/m2 to <40 kg/m2, ≥40 kg/m2 [morbid obesity]), by sex in 200 countries and territories, organised in 21 regions. We calculated the posterior probability of meeting the target of halting by 2025 the rise in obesity at its 2010 levels, if post-2000 trends continue. Findings We used 1698 population-based data sources, with more than 19·2 million adult participants (9·9 million men and 9·3 million women) in 186 of 200 countries for which estimates were made. Global age-standardised mean BMI increased from 21·7 kg/m2 (95% credible interval 21·3–22·1) in 1975 to 24·2 kg/m2 (24·0–24·4) in 2014 in men, and from 22·1 kg/m2 (21·7–22·5) in 1975 to 24·4 kg/m2 (24·2–24·6) in 2014 in women. Regional mean BMIs in 2014 for men ranged from 21·4 kg/m2 in central Africa and south Asia to 29·2 kg/m2 (28·6–29·8) in Polynesia and Micronesia; for women the range was from 21·8 kg/m2 (21·4–22·3) in south Asia to 32·2 kg/m2 (31·5–32·8) in Polynesia and Micronesia. Over these four decades, age-standardised global prevalence of underweight decreased from 13·8% (10·5–17·4) to 8·8% (7·4–10·3) in men and from 14·6% (11·6–17·9) to 9·7% (8·3–11·1) in women. South Asia had the highest prevalence of underweight in 2014, 23·4% (17·8–29·2) in men and 24·0% (18·9–29·3) in women. Age-standardised prevalence of obesity increased from 3·2% (2·4–4·1) in 1975 to 10·8% (9·7–12·0) in 2014 in men, and from 6·4% (5·1–7·8) to 14·9% (13·6–16·1) in women. 2·3% (2·0–2·7) of the world’s men and 5·0% (4·4–5·6) of women were severely obese (ie, have BMI ≥35 kg/m2). Globally, prevalence of morbid obesity was 0·64% (0·46–0·86) in men and 1·6% (1·3–1·9) in women. Interpretation If post-2000 trends continue, the probability of meeting the global obesity target is virtually zero. Rather, if these trends continue, by 2025, global obesity prevalence will reach 18% in men and surpass 21% in women; severe obesity will surpass 6% in men and 9% in women. Nonetheless, underweight remains prevalent in the world’s poorest regions, especially in south Asia. Funding Wellcome Trust, Grand Challenges Canada.
                Bookmark

                Author and article information

                Journal
                Cureus
                Cureus
                2168-8184
                Cureus
                Cureus (Palo Alto (CA) )
                2168-8184
                15 June 2023
                June 2023
                : 15
                : 6
                : e40453
                Affiliations
                [1 ] Division of Gynaecologic Oncology, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
                [2 ] Department of Anaesthesiology, Alexandra General Hospital, Athens, GRC
                [3 ] The Fertility Centre, Chelsea and Westminster Hospital NHS Foundation Trust, London, GBR
                Author notes
                Article
                10.7759/cureus.40453
                10349384
                d1f1c990-8950-48d3-96bb-295640fe1653
                Copyright © 2023, Pandraklakis et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 June 2023
                Categories
                Obstetrics/Gynecology
                Oncology

                gynaecology,obesity,eras,enhanced recovery after surgery,gynaecological oncology

                Comments

                Comment on this article