20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cadmium Handling, Toxicity and Molecular Targets Involved during Pregnancy: Lessons from Experimental Models

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Even decades after the discovery of Cadmium (Cd) toxicity, research on this heavy metal is still a hot topic in scientific literature: as we wrote this review, more than 1440 scientific articles had been published and listed by the PubMed.gov website during 2017. Cadmium is one of the most common and harmful heavy metals present in our environment. Since pregnancy is a very particular physiological condition that could impact and modify essential pathways involved in the handling of Cd, the prenatal life is a critical stage for exposure to this non-essential element. To give the reader an overview of the possible mechanisms involved in the multiple organ toxic effects in fetuses after the exposure to Cd during pregnancy, we decided to compile some of the most relevant experimental studies performed in experimental models and to summarize the advances in this field such as the Cd distribution and the factors that could alter it (diet, binding-proteins and membrane transporters), the Cd-induced toxicity in dams (preeclampsia, fertility, kidney injury, alteration in essential element homeostasis and bone mineralization), in placenta and in fetus (teratogenicity, central nervous system, liver and kidney).

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          Current status of cadmium as an environmental health problem.

          Cadmium is a toxic metal occurring in the environment naturally and as a pollutant emanating from industrial and agricultural sources. Food is the main source of cadmium intake in the non-smoking population. The bioavailability, retention and toxicity are affected by several factors including nutritional status such as low iron status. Cadmium is efficiently retained in the kidney (half-time 10-30 years) and the concentration is proportional to that in urine (U-Cd). Cadmium is nephrotoxic, initially causing kidney tubular damage. Cadmium can also cause bone damage, either via a direct effect on bone tissue or indirectly as a result of renal dysfunction. After prolonged and/or high exposure the tubular injury may progress to glomerular damage with decreased glomerular filtration rate, and eventually to renal failure. Furthermore, recent data also suggest increased cancer risks and increased mortality in environmentally exposed populations. Dose-response assessment using a variety of early markers of kidney damage has identified U-Cd points of departure for early kidney effects between 0.5 and 3 microg Cd/g creatinine, similar to the points of departure for effects on bone. It can be anticipated that a considerable proportion of the non-smoking adult population has urinary cadmium concentrations of 0.5 microg/g creatinine or higher in non-exposed areas. For smokers this proportion is considerably higher. This implies no margin of safety between the point of departure and the exposure levels in the general population. Therefore, measures should be put in place to reduce exposure to a minimum, and the tolerably daily intake should be set in accordance with recent findings.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metallothionein: an intracellular protein to protect against cadmium toxicity.

            Metallothioneins (MT) are low-molecular-weight, cysteine-rich, metal-binding proteins. MT genes are readily induced by various physiologic and toxicologic stimuli. Because the cysteines in MT are absolutely conserved across species, it was suspected that the cysteines are necessary for function and MT is essential for life. In attempts to determine the function(s) of MT, studies have been performed using four different experimental paradigms: (a) animals injected with chemicals known to induce MT; (b) cells adapted to survive and grow in high concentrations of MT-inducing toxicants; (c) cells transfected with the MT gene; and (d) MT-transgenic and MT-null mice. Most often, results from studies using the first three approaches have indicated multiple functions of MT in cell biology: MT (a) is a "storehouse" for zinc, (b) is a free-radical scavenger, and (c) protects against cadmium (Cd) toxicity. However, studies using MT-transgenic and null mice have not strongly supported the first two proposed functions but strongly support its function in protecting against Cd toxicity. Repeated administration of Cd to MT-null mice results in nephrotoxicity at one tenth the dose that produces nephrotoxicity in control mice. Human studies indicate that 7% of the general population have renal dysfunction from Cd exposure. Therefore, if humans did not have MT, "normal" Cd exposure would be nephrotoxic to humans. Thus, it appears that during evolution, the ability of MT to protect against Cd toxicity might have taken a more pivotal role in the maintenance of life processes, as compared with its other proposed functions (i.e. storehouse for zinc and free radical scavenger).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heavy metal poisoning: the effects of cadmium on the kidney.

              The heavy metal cadmium (Cd) is known to be a widespread environmental contaminant and a potential toxin that may adversely affect human health. Exposure is largely via the respiratory or gastrointestinal tracts; important non-industrial sources of exposure are cigarette smoke and food (from contaminated soil and water). The kidney is the main organ affected by chronic Cd exposure and toxicity. Cd accumulates in the kidney as a result of its preferential uptake by receptor-mediated endocytosis of freely filtered and metallothionein bound Cd (Cd-MT) in the renal proximal tubule. Internalised Cd-MT is degraded in endosomes and lysosomes, releasing free Cd(2+) into the cytosol, where it can generate reactive oxygen species (ROS) and activate cell death pathways. An early and sensitive manifestation of chronic Cd renal toxicity, which can be useful in individual and population screening, is impaired reabsorption of low molecular weight proteins (LMWP) (also a receptor-mediated process in the proximal tubule) such as retinol binding protein (RBP). This so-called 'tubular proteinuria' is a good index of proximal tubular damage, but it is not usually detected by routine clinical dipstick testing for proteinuria. Continued and heavy Cd exposure can progress to the clinical renal Fanconi syndrome, and ultimately to renal failure. Environmental Cd exposure may be a significant contributory factor to the development of chronic kidney disease, especially in the presence of other co-morbidities such as diabetes or hypertension; therefore, the sources and environmental impact of Cd, and efforts to limit Cd exposure, justify more attention.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                22 July 2017
                July 2017
                : 18
                : 7
                : 1590
                Affiliations
                [1 ]Departamento de Sociedad y Política Ambiental, CIIEMAD, Instituto Politécnico Nacional, 30 de Junio de 1520 s/n, La Laguna Ticomán, Ciudad de México 07340, Mexico; tjacoboe@ 123456ipn.mx
                [2 ]Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Gustavo A. Madero, San Pedro Zacatenco, Ciudad de México 07360, Mexico; santoyomitzi@ 123456gmail.com
                [3 ]Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health-School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D 58453 Witten, Germany; frank.thevenod@ 123456uni-wh.de
                Author notes
                [* ]Correspondence: obarbier@ 123456cinvestav.mx ; Tel.: +52-1-(55)-5747-3800
                Author information
                https://orcid.org/0000-0001-9682-8627
                Article
                ijms-18-01590
                10.3390/ijms18071590
                5536077
                28737682
                d1aabd59-e346-4adc-a7c4-9d231223ec07
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 June 2017
                : 18 July 2017
                Categories
                Review

                Molecular biology
                cadmium,pregnancy,multiple organs toxicity,fetus,placenta
                Molecular biology
                cadmium, pregnancy, multiple organs toxicity, fetus, placenta

                Comments

                Comment on this article