Search for authorsSearch for similar articles
53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      αvβ3 and α5β1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accumulating evidence suggests that integrin recycling regulates cell migration. However, the lack of reagents to selectively target the trafficking of individual heterodimers, as opposed to endocytic transport as a whole, has made it difficult to define the contribution made by particular recycling pathways to directional cell movement. We show that autophosphorylation of protein kinase D1 (PKD1) at Ser 916 is necessary for its association with αvβ3 integrin. Expression of PKD1 916A or the use of mutants of β3 that do not bind to PKD1 selectively inhibits short-loop, Rab4-dependent recycling of αvβ3, and this suppresses the persistence of fibroblast migration. However, we report that short-loop recycling does not directly contribute to fibroblast migration by moving αvβ3 to the cell front, but by antagonizing α5β1 recycling, which, in turn, influences the cell's decision to migrate with persistence or to move randomly.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          ER-to-Golgi transport visualized in living cells.

          Newly synthesized proteins that leave the endoplasmic reticulum (ER) are funnelled through the Golgi complex before being sorted for transport to their different final destinations. Traditional approaches have elucidated the biochemical requirements for such transport and have established a role for transport intermediates. New techniques for tagging proteins fluorescently have made it possible to follow the complete life history of single transport intermediates in living cells, including their formation, path and velocity en route to the Golgi complex. We have now visualized ER-to-Golgi transport using the viral glycoprotein ts045 VSVG tagged with green fluorescent protein (VSVG-GFP). Upon export from the ER, VSVG-GFP became concentrated in many differently shaped, rapidly forming pre-Golgi structures, which translocated inwards towards the Golgi complex along microtubules by using the microtubule minus-end-directed motor complex of dynein/dynactin. No loss of fluorescent material from pre-Golgi structures occurred during their translocation to the Golgi complex and they frequently stretched into tubular shapes. Together, our results indicate that these pre-Golgi carrier structures moving unidirectionally along microtubule tracks are responsible for transporting VSVG-GFP through the cytoplasm to the Golgi complex. This contrasts with the traditional focus on small vesicles as the primary vehicles for ER-to-Golgi transport.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells.

            Duplexes of 21-nt RNAs, known as short-interfering RNAs (siRNAs), efficiently inhibit gene expression by RNA interference (RNAi) when introduced into mammalian cells. We show that siRNAs can be synthesized by in vitro transcription with T7 RNA polymerase, providing an economical alternative to chemical synthesis of siRNAs. By using this method, we show that short hairpin siRNAs can function like siRNA duplexes to inhibit gene expression in a sequence-specific manner. Further, we find that hairpin siRNAs or siRNAs expressed from an RNA polymerase III vector based on the mouse U6 RNA promoter can effectively inhibit gene expression in mammalian cells. U6-driven hairpin siRNAs dramatically reduced the expression of a neuron-specific beta-tubulin protein during the neuronal differentiation of mouse P19 cells, demonstrating that this approach should be useful for studies of differentiation and neurogenesis. We also observe that mismatches within hairpin siRNAs can increase the strand selectivity of a hairpin siRNA, which may reduce self-targeting of vectors expressing siRNAs. Use of hairpin siRNA expression vectors for RNAi should provide a rapid and versatile method for assessing gene function in mammalian cells, and may have applications in gene therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Rac switch regulates random versus directionally persistent cell migration

              Directional migration moves cells rapidly between points, whereas random migration allows cells to explore their local environments. We describe a Rac1 mechanism for determining whether cell patterns of migration are intrinsically random or directionally persistent. Rac activity promoted the formation of peripheral lamellae that mediated random migration. Decreasing Rac activity suppressed peripheral lamellae and switched the cell migration patterns of fibroblasts and epithelial cells from random to directionally persistent. In three-dimensional rather than traditional two-dimensional cell culture, cells had a lower level of Rac activity that was associated with rapid, directional migration. In contrast to the directed migration of chemotaxis, this intrinsic directional persistence of migration was not mediated by phosphatidylinositol 3′-kinase lipid signaling. Total Rac1 activity can therefore provide a regulatory switch between patterns of cell migration by a mechanism distinct from chemotaxis.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                7 May 2007
                : 177
                : 3
                : 515-525
                Affiliations
                Integrin Cell Biology Laboratory, Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
                Author notes

                Correspondence to Jim C. Norman: j.norman@ 123456beatson.gla.ac.uk

                Article
                200609004
                10.1083/jcb.200609004
                2064808
                17485491
                d19fb5f0-cd44-4719-8f11-b3dcfb751c91
                Copyright © 2007, The Rockefeller University Press
                History
                : 1 September 2006
                : 4 April 2007
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content505

                Cited by79

                Most referenced authors1,605