16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clostridium botulinum spores in Polish honey samples

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this study was an examination of 240 multifloral honey samples collected from Polish apiaries to determine Clostridium botulinum occurrence. Honey was collected from apiaries directly after the extraction process. Samples were inoculated by using the dilution and centrifugation method. Suspected isolates were examined by using mouse bioassay, polymerase chain reaction (PCR), and real-time PCR methods. C. botulinum type A and B strains were detected in 5 of 240 examined honey samples (2.1%). Bacterial strains were also detected that were phenotypically similar to C. botulinum but that did not exhibit the ability to produce botulinum toxins and did not show the presence of the botulinum cluster ( ntnh and bont genes) or expression of the ntnh gene. The methods used in the examination, especially the expression analysis of ntnh gene, enabled specific analysis of suspected strains and could be used routinely in environmental isolate analyses of C. botulinum occurrence.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular characterization of a novel botulinum neurotoxin type H gene.

          We sequenced the 2 botulinum toxin gene clusters of Clostridium botulinum strain IBCA10-7060 type Bh. The sequence of bont/H differed substantially from the sequences of the 7 known bont genes for toxin types A-G. The 5' one-third terminus of bont/H that codes for the botulinum toxin light chain differed markedly from the light chain coding sequences of toxin types A-G. The 3' two-thirds terminus of bont/H that codes for the botulinum toxin heavy chain contained a novel Hn translocation domain coding sequence and a nonneutralizing type A-like Hc binding domain coding sequence. bont/H was part of an orfX toxin gene cluster that was located at a unique chromosomal site distant from those used by other botulinum toxin gene clusters. The bont/B sequence was similar to that of subtype bont/B2 and was located within its ha toxin gene cluster at the oppA/brnQ site. Our findings further establish that C. botulinum IBCA10-7060 produces novel BoNT/H.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Laboratory diagnostics of botulism.

            Botulism is a potentially lethal paralytic disease caused by botulinum neurotoxin. Human pathogenic neurotoxins of types A, B, E, and F are produced by a diverse group of anaerobic spore-forming bacteria, including Clostridium botulinum groups I and II, Clostridium butyricum, and Clostridium baratii. The routine laboratory diagnostics of botulism is based on the detection of botulinum neurotoxin in the patient. Detection of toxin-producing clostridia in the patient and/or the vehicle confirms the diagnosis. The neurotoxin detection is based on the mouse lethality assay. Sensitive and rapid in vitro assays have been developed, but they have not yet been appropriately validated on clinical and food matrices. Culture methods for C. botulinum are poorly developed, and efficient isolation and identification tools are lacking. Molecular techniques targeted to the neurotoxin genes are ideal for the detection and identification of C. botulinum, but they do not detect biologically active neurotoxin and should not be used alone. Apart from rapid diagnosis, the laboratory diagnostics of botulism should aim at increasing our understanding of the epidemiology and prevention of the disease. Therefore, the toxin-producing organisms should be routinely isolated from the patient and the vehicle. The physiological group and genetic traits of the isolates should be determined.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toxigenic clostridia.

              C Hatheway (1990)
              Toxigenic clostridia belonging to 13 recognized species are discussed in this review. Each species or group of organisms is, in general, introduced by presenting the historical aspects of its discovery by early investigators of human and animal diseases. The diseases caused by each species or group are described and usually discussed in relation to the toxins involved in the pathology. Morphological and physiological characteristics of the organisms are described. Finally, the toxins produced by each organism are listed, with a presentation of their biological activities and physical and biochemical characteristics. The complete amino acid sequences for some are known, and some of the genes have been cloned. The term toxin is used loosely to include the various antigenic protein products of these organisms with biological and serological activities which have served as distinguishing characteristics for differentiation and classification. Some of these factors are not truly toxic and have no known role in pathogenicity. Some of the interesting factors common to more than one species or group are the following: neurotoxins, lethal toxins, lecithinases, oxygen-labile hemolysins, binary toxins, and ADP-ribosyltransferases. Problems in bacterial nomenclature and designation of biologically active factors are noted.
                Bookmark

                Author and article information

                Journal
                J Vet Sci
                J. Vet. Sci
                JVS
                Journal of Veterinary Science
                The Korean Society of Veterinary Science
                1229-845X
                1976-555X
                September 2018
                27 September 2018
                : 19
                : 5
                : 635-642
                Affiliations
                [1 ]Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute, 24-100 Pulawy, Poland.
                [2 ]Department of Honey Bee Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland.
                Author notes
                Corresponding author: Tel: +48-81-889-3191; Fax: +48-81-886-2595; tomasz.grenda@ 123456piwet.pulawy.pl
                Article
                10.4142/jvs.2018.19.5.635
                6167343
                29929360
                cf697b3a-2663-4744-bacf-0488b416e89c
                © 2018 The Korean Society of Veterinary Science

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 April 2018
                : 24 May 2018
                : 10 June 2018
                Funding
                Funded by: Ministry of Science and Higher Education, Republic of Poland, CrossRef https://doi.org/10.13039/501100004569;
                Award ID: 05-1/KNOW2/2015
                Categories
                Original Article

                Veterinary medicine
                clostridium botulinum,polish apiaries,honey,neurotoxins
                Veterinary medicine
                clostridium botulinum, polish apiaries, honey, neurotoxins

                Comments

                Comment on this article