43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An approach for exploring interaction between two proteins in vivo

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We describe a strategy for exploring the function of protein-protein interactions in striated muscle in vivo. We describe our experience using this strategy to study the interaction of UNC-112 (kindlin) with PAT-4 (integrin linked kinase). Random mutagenesis is used to generate a collection of mutants that are screened for lack of binding or gain of binding using a yeast 2-hybrid assay. The mutant proteins are then expressed in transgenic C. elegans to determine their ability to localize in the sarcomere. We emphasize two advantages of this strategy: (1) for studying the interaction of protein A with protein B, when protein A can interact with multiple proteins, and (2) it explores the function of an interaction rather than the absence of, or reduced level of, a protein as can be obtained with null mutants or knockdown by RNAi. We propose that this method can be generalized for studying the meaning of a protein-protein interaction in muscle for any system in which transgenic animals can be generated and their muscles can be imaged.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Kindlin-3 is required for beta2 integrin-mediated leukocyte adhesion to endothelial cells.

          Integrin activation is essential for the function of all blood cells, including platelets and leukocytes. The blood cell-specific FERM domain protein Kindlin-3 is required for the activation of the beta1 and beta3 integrins on platelets. Impaired activation of beta1, beta2 and beta3 integrins on platelets and leukocytes is the hallmark of a rare autosomal recessive leukocyte adhesion deficiency syndrome in humans called LAD-III, characterized by severe bleeding and impaired adhesion of leukocytes to inflamed endothelia. Here we show that Kindlin-3 also binds the beta2 integrin cytoplasmic domain and is essential for neutrophil binding and spreading on beta2 integrin-dependent ligands such as intercellular adhesion molecule-1 and the complement C3 activation product iC3b. Moreover, loss of Kindlin-3 expression abolished firm adhesion and arrest of neutrophils on activated endothelial cells in vitro and in vivo, whereas selectin-mediated rolling was unaffected. Thus, Kindlin-3 is essential to activate the beta1, beta2 and beta3 integrin classes, and loss of Kindlin-3 function is sufficient to cause a LAD-III-like phenotype in mice.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation.

            Integrins are the major adhesion receptors of leukocytes and platelets. Beta1 and beta2 integrin function on leukocytes is crucial for a successful immune response and the platelet integrin alpha(IIb)beta3 initiates the process of blood clotting through binding fibrinogen. Integrins on circulating cells bind poorly to their ligands but become active after 'inside-out' signaling through other membrane receptors. Subjects with leukocyte adhesion deficiency-1 (LAD-I) do not express beta2 integrins because of mutations in the gene specifying the beta2 subunit, and they suffer recurrent bacterial infections. Mutations affecting alpha(IIb)beta3 integrin cause the bleeding disorder termed Glanzmann's thrombasthenia. Subjects with LAD-III show symptoms of both LAD-I and Glanzmann's thrombasthenia. Their hematopoietically-derived cells express beta1, beta2 and beta3 integrins, but defective inside-out signaling causes immune deficiency and bleeding problems. The LAD-III lesion has been attributed to a C --> A mutation in the gene encoding calcium and diacylglycerol guanine nucleotide exchange factor (CALDAGGEF1; official symbol RASGRP2) specifying the CALDAG-GEF1 protein, but we show that this change is not responsible for the LAD-III disorder. Instead, we identify mutations in the KINDLIN3 (official symbol FERMT3) gene specifying the KINDLIN-3 protein as the cause of LAD-III in Maltese and Turkish subjects. Two independent mutations result in decreased KINDLIN3 messenger RNA levels and loss of protein expression. Notably, transfection of the subjects' lymphocytes with KINDLIN3 complementary DNA but not CALDAGGEF1 cDNA reverses the LAD-III defect, restoring integrin-mediated adhesion and migration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations

              By taking advantage of a lethal phenotype characteristic of Caenorhabditis elegans embryos that fail to move, we have identified 13 genes required for muscle assembly and function and discovered a new lethal class of alleles for three previously known muscle-affecting genes. By staining mutant embryos for myosin and actin we have recognized five distinct classes of genes: mutations in four genes disrupt the assembly of thick and thin filaments into the myofilament lattice as well as the polarized location of these components to the sarcolemma. Mutations in another three genes also disrupt thick and thin filament assembly, but allow proper polarization of lattice components based on the myosin heavy chain isoform that we analyzed. Another two classes of genes are defined by mutations with principal effects on thick or thin filament assembly into the lattice, but not both. The final class includes three genes in which mutations cause relatively minor defects in lattice assembly. Failure of certain mutants to stain with antibodies to specific muscle cell antigens suggest that two genes associated with severe disruptions of myofilament lattice assembly may code for components of the basement membrane and the sarcolemma that are concentrated where dense bodies (Z- line analogs) and M-lines attach to the cell membrane. Similar evidence suggests that one of the genes associated with mild effects on lattice assembly may code for tropomyosin. Many of the newly identified genes are likely to play critical roles in muscle development and function.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                17 November 2013
                29 April 2014
                2014
                : 5
                : 162
                Affiliations
                Department of Pathology, Emory University Atlanta, GA, USA
                Author notes

                Edited by: Aikaterini Kontrogianni-Konstantopoulos, University of Maryland, USA

                Reviewed by: Marion L. Greaser, University of Wisconsin-Madison, USA; Jim Du, University of Maryland, USA

                *Correspondence: Hiroshi Qadota, Department of Pathology, Emory University, Whitehead Biomedical Research Building Room 165, Atlanta, GA 30322, USA e-mail: hkadota@ 123456emory.edu ;
                Guy M. Benian, Department of Pathology, Emory University, Whitehead Biomedical Research Building Room 105E, Atlanta, GA 30322, USA e-mail: pathgb@ 123456emory.edu

                This article was submitted to Striated Muscle Physiology, a section of the journal Frontiers in Physiology.

                Article
                10.3389/fphys.2014.00162
                4010775
                24808865
                cf370837-3783-4c54-bb32-280fe384ff4d
                Copyright © 2014 Qadota and Benian.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 October 2013
                : 08 April 2014
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 40, Pages: 6, Words: 5828
                Categories
                Physiology
                Review Article

                Anatomy & Physiology
                protein-protein interactions,yeast 2-hybrid,c. elegans,transgenics,kindlin,ilk,protein localization

                Comments

                Comment on this article