1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Using a PBPK model to study the influence of different characteristics of nanoparticles on their biodistribution

      , , ,
      Journal of Physics: Conference Series
      IOP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Toxic potential of materials at the nanolevel.

          Nanomaterials are engineered structures with at least one dimension of 100 nanometers or less. These materials are increasingly being used for commercial purposes such as fillers, opacifiers, catalysts, semiconductors, cosmetics, microelectronics, and drug carriers. Materials in this size range may approach the length scale at which some specific physical or chemical interactions with their environment can occur. As a result, their properties differ substantially from those bulk materials of the same composition, allowing them to perform exceptional feats of conductivity, reactivity, and optical sensitivity. Possible undesirable results of these capabilities are harmful interactions with biological systems and the environment, with the potential to generate toxicity. The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats.

            Studies with intravenously injected ultrafine particles have shown that the liver is the major organ of their uptake from the blood circulation. Measuring translocation of inhaled ultrafine particles to extrapulmonary organs via the blood compartment is hampered by methodological difficulties (i.e., label may come off, partial solubilization) and analytical limitations (measurement of very small amounts). The objective of our pilot study was to determine whether ultrafine elemental carbon particles translocate to the liver and other extrapulmonary organs following inhalation as singlet particles by rats. We generated ultrafine (13)C particles as an aerosol with count median diameters (CMDs) of 20-29 nm (GSD 1.7) using electric spark discharge of (13)C graphite electrodes in argon. Nine Fischer 344 rats were exposed to these particles for 6 h. in whole-body inhalation chambers at concentrations of 180 and 80 microg/m(3); 3 animals each were killed at 0.5, 18, and 24 h postexposure. Six unexposed rats served as controls. Lung lobes, liver, heart, brain, olfactory bulb, and kidney were excised, homogenized, and freeze-dried for analysis of the added (13)C by isotope ratio mass spectrometry. Organic (13)C was not detected in the (13)C particles. The (13)C retained in the lung at 0.5 h postexposure was about 70% less than predicted by rat deposition models for ultrafine particles, and did not change significantly during the 24-h postexposure period. Normalized to exposure concentration, the added (13)C per gram of lung on average in the postexposure period was approximately 9 ng/g organ/microg/m(3). Significant amounts of (13)C had accumulated in the liver by 0.5 h postinhalation only at the high exposure concentration, whereas by 18 and 24 h postexposure the (13)C amount of the livers of all exposed rats was about fivefold greater than the (13)C burden retained in the lung. No significant increase in (13)C was detected in the other organs which were examined. These results demonstrate effective translocation of ultrafine elemental carbon particles to the liver by 1 d after inhalation exposure. Translocation pathways include direct input into the blood compartment from ultrafine carbon particles deposited throughout the respiratory tract. However, since predictive particle deposition models indicate that respiratory tract deposits alone may not fully account for the hepatic (13)C burden, input from ultrafine particles present in the GI tract needs to be considered as well. Such translocation to blood and extrapulmonary tissues may well be different between ultrafine carbon and other insoluble (metal) ultrafine particles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The kinetics of the tissue distribution of silver nanoparticles of different sizes.

              Blood kinetics and tissue distribution of 20, 80 and 110 nm silver nanoparticles were investigated in rats up to 16 days after intravenous administration once daily for 5 consecutive days. Following both single and repeated injection, silver nanoparticles disappeared rapidly from the blood and distributed to all organs evaluated (liver, lungs, spleen, brain, heart, kidneys and testes) regardless of size. The 20 nm particles distributed mainly to liver, followed by kidneys and spleen, whereas the larger particles distributed mainly to spleen followed by liver and lung. In the other organs evaluated, no major differences between the sizes were observed. Size-dependent tissue distribution suggests size-dependent toxicity and health risks. Repeated administration resulted in accumulation in liver, lung and spleen, indicating that these organs may be potential target organs for toxicity after repeated exposure. A physiologically based pharmacokinetic (PBPK) model for nanoparticles which describes the kinetics of silver nanoparticles was developed. Model parameter values were estimated by fitting to data. No clear relation between parameter values and corresponding particle diameters became apparent. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Journal of Physics: Conference Series
                J. Phys.: Conf. Ser.
                IOP Publishing
                1742-6588
                1742-6596
                April 10 2013
                April 10 2013
                April 10 2013
                : 429
                : 012019
                Article
                10.1088/1742-6596/429/1/012019
                cf09e98b-069f-4bda-a13d-f1c51216a825
                © 2013

                http://iopscience.iop.org/info/page/text-and-data-mining

                http://iopscience.iop.org/page/copyright

                History

                Comments

                Comment on this article