48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      First attempt to motion corrected flow encoding using free-breathing phase-contrast CINE MRI

      research-article
      1 , 3 , , 1 , 3 , 2 , 3 , 1 , 4
      Journal of Cardiovascular Magnetic Resonance
      BioMed Central
      15th Annual SCMR Scientific Sessions
      2-5 February 2012

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Summary This study demonstrates the feasibility of free-breathing phase-contrast CINE MRI without averaging. A new version of the CINE GRICS algorithm[1] was used to correct for motion. Background Phase-contrast MRI encodes speed and direction of moving spins by means of toggling a bipolar gradient. It is a valuable tool for assessing conditions affecting the vascular system by measuring the velocity of flowing blood[2]. Clinically, this sequence is performed in breath-hold or in free breathing but, in the latter case, using signal averaging. We propose to demonstrate the feasibility of free-breathing phase-contrast CINE MRI without averaging exploiting the acquisition redundancy by applying a new version of the CINE GRICS algorithm[1] to correct for motion. Methods Cardiac examination (approved by our local ethics committee) was performed on one normal volunteer during which three 2D phase-contrast CINE MRI sequences (common parameters: 256x128 acquisition matrix, 6 views per segment (vps), 32 reconstructed cardiac phases, 150 cm/sec VENC, slice direction velocity encoding, 5 mm slice thickness, 44 cm FOV, 62.5 kHz bandwidth, 3.05/8.08 ms TE/TR, 15° flip angle) were acquired on a 3T scanner (Signa HDxt, GE Healthcare, Milwaukee, WI) with a 8-element cardiac coil : (1) breath-held (2) averaged (3 NEX) in free breathing (3) in free breathing storing the raw data of 3 NEX to an external computer for offline processing. Signals from a respiratory belt were carried by a custom Maglife patient monitoring system (Schiller Medical, France) and recorded with a dedicated home-made hardware. Offline processing consisted of splitting the raw data from the 2 velocity encoding steps thus giving 2 sets of raw data. They were formatted and processed separately, along with the respiratory signals, by the CINE GRICS algorithm on a 16-node compute cluster. Total reconstruction delay was 15 min. Phase difference images (Figure 1) were created. Images were analysed by an experimented radiologist using CV Flow (GE Medical Systems) and velocity curves were produced (Figure 2) for the ascending aorta ROI. Figure 1 Section of the aortic arch at systolic peak velocity. Phase difference images (A,C,E) and magnitude images (B,D,F) of phase contrast CINE loops, from top to bottom : apnea, average and PC CINE GRICS. Figure 2 Velocity curves in an ascending aorta ROI (D) from phase contrast CINE scans in breath-hold (A) in free breathing with averaging (C) and in free breathing with PC CINE GRICS (B). Results Figure 1 shows a section of the aortic arch from the 3 sequences (all same plane coordinates and cardiac phase). Averaged acquisition exhibits blurring on the images generated by the manufacturer’s software. Motion correction using GRICS removes almost all ghosting artefacts and improves vessel contrast delineation. Figure 2 shows that velocity curves from the breath-held, free breathing and PC CINE GRICS scans present the same features (note that curves are shifted due to trigger delay implementations). Conclusions We have demonstrated that motion corrected free-breathing phase-contrast CINE MRI using GRICS is feasible. Future work will focus on (1) a 3D PC CINE implementation and (2) increased resolution for sharp, small structures imaging.

          Related collections

          Author and article information

          Conference
          J Cardiovasc Magn Reson
          Journal of Cardiovascular Magnetic Resonance
          BioMed Central
          1097-6647
          1532-429X
          2012
          1 February 2012
          : 14
          : Suppl 1
          : W53
          Affiliations
          [1 ]IADI / INSERM U947, Vandoeuvre-les-Nancy, France
          [2 ]CHU Nancy, Vandoeuvre-les-Nancy, France
          [3 ]Université de Lorraine, Nancy, France
          [4 ]CIC-IT Nancy, Nancy, France
          Article
          1532-429X-14-S1-W53
          10.1186/1532-429X-14-S1-W53
          3305750
          ce6dafbc-e568-41e3-9299-0ace96fdbafc
          Copyright ©2012 Meyer et al; licensee BioMed Central Ltd.

          This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

          15th Annual SCMR Scientific Sessions
          Orlando, FL, USA
          2-5 February 2012
          History
          Categories
          Workshop Presentation

          Cardiovascular Medicine
          Cardiovascular Medicine

          Comments

          Comment on this article