11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Development of Innovative Biomaterials and Devices for the Treatment of Cardiovascular Diseases

      1 , 1 , 1 , 1 , 1
      Advanced Materials
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references270

          • Record: found
          • Abstract: found
          • Article: not found

          Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association

          Circulation, 139(10)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              3D bioprinting of tissues and organs.

              Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Materials
                Advanced Materials
                Wiley
                0935-9648
                1521-4095
                July 24 2022
                : 2201971
                Affiliations
                [1 ]National Engineering Research Center for Biomaterials and College of Biomedical Engineering Sichuan University 29 Wangjiang Road Chengdu 610064 China
                Article
                10.1002/adma.202201971
                35654586
                cd9db692-b0c1-430f-874a-5197db27b94a
                © 2022

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article