60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      BZLF1 Governs CpG-Methylated Chromatin of Epstein-Barr Virus Reversing Epigenetic Repression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epigenetic mechanisms are essential for the regulation of all genes in mammalian cells but transcriptional repression including DNA methylation are also major epigenetic mechanisms of defense inactivating potentially harmful pathogens. Epstein-Barr Virus (EBV), however, has evolved to take advantage of CpG methylated DNA to regulate its own biphasic life cycle. We show here that latent EBV DNA has an extreme composition of methylated CpG dinucleotides with a bimodal distribution of unmethylated or fully methylated DNA at active latent genes or completely repressed lytic promoters, respectively. We find this scenario confirmed in primary EBV-infected memory B cells in vivo. Extensive CpG methylation of EBV's DNA argues for a very restricted gene expression during latency. Above-average nucleosomal occupancy, repressive histone marks, and Polycomb-mediated epigenetic silencing further shield early lytic promoters from activation during latency. The very tight repression of viral lytic genes must be overcome when latent EBV enters its lytic phase and supports de novo virus synthesis in infected cells. The EBV-encoded and AP-1 related transcription factor BZLF1 overturns latency and initiates virus synthesis in latently infected cells. Paradoxically, BZLF1 preferentially binds to CpG-methylated motifs in key viral promoters for their activation. Upon BZLF1 binding, we find nucleosomes removed, Polycomb repression lost, and RNA polymerase II recruited to the activated early promoters promoting efficient lytic viral gene expression. Surprisingly, DNA methylation is maintained throughout this phase of viral reactivation and is no hindrance to active transcription of extensively CpG methylated viral genes as thought previously. Thus, we identify BZLF1 as a pioneer factor that reverses epigenetic silencing of viral DNA to allow escape from latency and report on a new paradigm of gene regulation.

          Author Summary

          Latency is a fundamental molecular mechanism that is observed in many viruses. We reveal that the human herpes virus Epstein-Barr virus (EBV) uses cellular functions of epigenetic repression to establish latency in infected B cells and a previously unknown mechanism to escape from it. We show that the herpesviral DNA genome is transcriptionally silenced by cellular mechanisms during viral latency, which includes excessive methylation of EBV DNA in vitro and in its human host in vivo. Epigenetic modifications like high nucleosome density and repressive histone marks shield and inactivate lytic viral genes during latency. EBV's genuinely repressed chromatin poses the problem of efficient reactivation to support virus synthesis. BZLF1 is the viral switch gene that induces the lytic phase of EBV's life cycle. We show here that this viral transcription factor erases static, repressive chromatin marks reversing epigenetic silencing. DNA methylation is preserved but no hindrance to lytic gene activation because BZLF1 directly binds to methylated viral DNA and overcomes heavily repressed chromatin without the need for active DNA demethylation. DNA demethylation has been thought to be a prerequisite for gene transcription but this virus falsifies this hypothesis and provides a new model for epigenetic gene regulation.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation.

          Y. H. Yang (2002)
          There are many sources of systematic variation in cDNA microarray experiments which affect the measured gene expression levels (e.g. differences in labeling efficiency between the two fluorescent dyes). The term normalization refers to the process of removing such variation. A constant adjustment is often used to force the distribution of the intensity log ratios to have a median of zero for each slide. However, such global normalization approaches are not adequate in situations where dye biases can depend on spot overall intensity and/or spatial location within the array. This article proposes normalization methods that are based on robust local regression and account for intensity and spatial dependence in dye biases for different types of cDNA microarray experiments. The selection of appropriate controls for normalization is discussed and a novel set of controls (microarray sample pool, MSP) is introduced to aid in intensity-dependent normalization. Lastly, to allow for comparisons of expression levels across slides, a robust method based on maximum likelihood estimation is proposed to adjust for scale differences among slides.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development.

            The trithorax and the polycomb group proteins are chromatin modifiers, which play a key role in the epigenetic regulation of development, differentiation and maintenance of cell fates. The polycomb repressive complex 2 (PRC2) mediates transcriptional repression by catalysing the di- and tri-methylation of Lys 27 on histone H3 (H3K27me2/me3). Owing to the essential role of the PRC2 complex in repressing a large number of genes involved in somatic processes, the H3K27me3 mark is associated with the unique epigenetic state of stem cells. The rapid decrease of the H3K27me3 mark during specific stages of embryogenesis and stem-cell differentiation indicates that histone demethylases specific for H3K27me3 may exist. Here we show that the human JmjC-domain-containing proteins UTX and JMJD3 demethylate tri-methylated Lys 27 on histone H3. Furthermore, we demonstrate that ectopic expression of JMJD3 leads to a strong decrease of H3K27me3 levels and causes delocalization of polycomb proteins in vivo. Consistent with the strong decrease in H3K27me3 levels associated with HOX genes during differentiation, we show that UTX directly binds to the HOXB1 locus and is required for its activation. Finally mutation of F18E9.5, a Caenorhabditis elegans JMJD3 orthologue, or inhibition of its expression, results in abnormal gonad development. Taken together, these results suggest that H3K27me3 demethylation regulated by UTX/JMJD3 proteins is essential for proper development. Moreover, the recent demonstration that UTX associates with the H3K4me3 histone methyltransferase MLL2 (ref. 8) supports a model in which the coordinated removal of repressive marks, polycomb group displacement, and deposition of activating marks are important for the stringent regulation of transcription during cellular differentiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain.

              Cytosine methylation is the major covalent modification of mammalian genomic DNA and plays important roles in transcriptional regulation. The molecular mechanism underlying the enzymatic removal of this epigenetic mark, however, remains elusive. Here, we show that 5-methylcytosine (5mC) hydroxylase TET1, by converting 5mCs to 5-hydroxymethylcytosines (5hmCs), promotes DNA demethylation in mammalian cells through a process that requires the base excision repair pathway. Though expression of the 12 known human DNA glycosylases individually did not enhance removal of 5hmCs in mammalian cells, demethylation of both exogenously introduced and endogenous 5hmCs is promoted by the AID (activation-induced deaminase)/APOBEC (apolipoprotein B mRNA-editing enzyme complex) family of cytidine deaminases. Furthermore, Tet1 and Apobec1 are involved in neuronal activity-induced, region-specific, active DNA demethylation and subsequent gene expression in the dentate gyrus of the adult mouse brain in vivo. Our study suggests a TET1-induced oxidation-deamination mechanism for active DNA demethylation in mammals. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                September 2012
                September 2012
                6 September 2012
                : 8
                : 9
                : e1002902
                Affiliations
                [1 ]Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
                [2 ]Adolf-Butenandt Institut, Ludwig-Maximilians-Universität, Munich, Germany
                Emory University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AW WH. Performed the experiments: AW. Analyzed the data: AW JMAS. Contributed reagents/materials/analysis tools: WH AW JMAS. Wrote the paper: AW WH.

                Article
                PPATHOGENS-D-12-00492
                10.1371/journal.ppat.1002902
                3435241
                22969425
                cd99afc5-2811-4aed-a3ad-ba914e4508db
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 February 2012
                : 28 July 2012
                Page count
                Pages: 16
                Funding
                Our work was supported by the Deutsche Forschungsgemeinschaft (SPP1230, SFBTR5, SFBTR36) and the National Institutes of Health (grant CA70723). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genetics
                Epigenetics
                DNA modification
                Histone Modification
                Chromatin
                Gene Expression
                Molecular Cell Biology
                Gene Expression
                DNA modification
                DNA transcription
                Histone Modification
                Chromatin
                Nucleic Acids
                DNA
                DNA structure
                Cellular Stress Responses

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article