23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A subunit of the oligosaccharyltransferase complex is required for interspecific gametophyte recognition in Arabidopsis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Species-specific gamete recognition is a key premise to ensure reproductive success and the maintenance of species boundaries. During plant pollen tube (PT) reception, gametophyte interactions likely allow the species-specific recognition of signals from the PT (male gametophyte) by the embryo sac (female gametophyte), resulting in PT rupture, sperm release, and double fertilization. This process is impaired in interspecific crosses between Arabidopsis thaliana and related species, leading to PT overgrowth and a failure to deliver the sperm cells. Here we show that ARTUMES ( ARU) specifically regulates the recognition of interspecific PTs in A. thaliana. ARU, identified in a genome-wide association study (GWAS), exclusively influences interspecific—but not intraspecific—gametophyte interactions. ARU encodes the OST3/6 subunit of the oligosaccharyltransferase complex conferring protein N-glycosylation. Our results suggest that glycosylation patterns of cell surface proteins may represent an important mechanism of gametophyte recognition and thus speciation.

          Abstract

          Species-specific gamete recognition is needed to maintain species boundaries. Here, Müller et al. show that ARTUMES regulates pollen tube recognition between different Arabidopsis species, representing the first gene known to exclusively influence inter- but not intraspecific gamete interaction in plants.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants.

          Genome sequencing has resulted in the identification of a large number of uncharacterized genes with unknown functions. It is widely recognized that determination of the intracellular localization of the encoded proteins may aid in identifying their functions. To facilitate these localization experiments, we have generated a series of fluorescent organelle markers based on well-established targeting sequences that can be used for co-localization studies. In particular, this organelle marker set contains indicators for the endoplasmic reticulum, the Golgi apparatus, the tonoplast, peroxisomes, mitochondria, plastids and the plasma membrane. All markers were generated with four different fluorescent proteins (FP) (green, cyan, yellow or red FPs) in two different binary plasmids for kanamycin or glufosinate selection, respectively, to allow for flexible combinations. The labeled organelles displayed characteristic morphologies consistent with previous descriptions that could be used for their positive identification. Determination of the intracellular distribution of three previously uncharacterized proteins demonstrated the usefulness of the markers in testing predicted subcellular localizations. This organelle marker set should be a valuable resource for the plant community for such co-localization studies. In addition, the Arabidopsis organelle marker lines can also be employed in plant cell biology teaching labs to demonstrate the distribution and dynamics of these organelles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An efficient multi-locus mixed model approach for genome-wide association studies in structured populations

            Population structure causes genome-wide linkage disequilibrium between unlinked loci, leading to statistical confounding in genome-wide association studies. Mixed models have been shown to handle the confounding effects of a diffuse background of large numbers of loci of small effect well, but do not always account for loci of larger effect. Here we propose a multi-locus mixed model as a general method for mapping complex traits in structured populations. Simulations suggest that our method outperforms existing methods, in terms of power as well as false discovery rate. We apply our method to human and Arabidopsis thaliana data, identifying novel associations in known candidates as well as evidence for allelic heterogeneity. We also demonstrate how a priori knowledge from an A. thaliana linkage mapping study can be integrated into our method using a Bayesian approach. Our implementation is computationally efficient, making the analysis of large datasets (n > 10000) practicable.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The rapid evolution of reproductive proteins.

              Many genes that mediate sexual reproduction, such as those involved in gamete recognition, diverge rapidly, often as a result of adaptive evolution. This widespread phenomenon might have important consequences, such as the establishment of barriers to fertilization that might lead to speciation. Sequence comparisons and functional studies are beginning to show the extent to which the rapid divergence of reproductive proteins is involved in the speciation process.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                11 March 2016
                2016
                : 7
                : 10826
                Affiliations
                [1 ]Department of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich , Zollikerstrasse 107, 8008 Zürich, Switzerland
                Author notes
                [*]

                Present address: Boyce-Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, USA

                [†]

                Present address: Carnegie Institution for Science, Department of Plant Biology, 260 Panama Street, Stanford, California 94305, USA

                Article
                ncomms10826
                10.1038/ncomms10826
                4792959
                26964640
                cd91d118-6067-4035-9418-66c2d1a1e599
                Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 21 August 2015
                : 21 January 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article