26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pollen-Pistil Interactions as Reproductive Barriers

      1 , 1
      Annual Review of Plant Biology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pollen-pistil interactions serve as important prezygotic reproductive barriers that play a critical role in mate selection in plants. Here, we highlight recent progress toward understanding the molecular basis of pollen-pistil interactions as reproductive isolating barriers. These barriers can be active systems of pollen rejection, or they can result from a mismatch of required male and female factors. In some cases, the barriers are mechanistically linked to self-incompatibility systems, while others represent completely independent processes. Pollen-pistil reproductive barriers can act as soon as pollen is deposited on a stigma, where penetration of heterospecific pollen tubes is blocked by the stigma papillae. As pollen tubes extend, the female transmitting tissue can selectively limit growth by producing cell wall–modifying enzymes and cytotoxins that interact with the growing pollen tube. At ovules, differential pollen tube attraction and inhibition of sperm cell release can act as barriers to heterospecific pollen tubes.

          Related collections

          Most cited references146

          • Record: found
          • Abstract: found
          • Article: not found

          Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells.

          For more than 140 years, pollen tube guidance in flowering plants has been thought to be mediated by chemoattractants derived from target ovules. However, there has been no convincing evidence of any particular molecule being the true attractant that actually controls the navigation of pollen tubes towards ovules. Emerging data indicate that two synergid cells on the side of the egg cell emit a diffusible, species-specific signal to attract the pollen tube at the last step of pollen tube guidance. Here we report that secreted, cysteine-rich polypeptides (CRPs) in a subgroup of defensin-like proteins are attractants derived from the synergid cells. We isolated synergid cells of Torenia fournieri, a unique plant with a protruding embryo sac, to identify transcripts encoding secreted proteins as candidate molecules for the chemoattractant(s). We found two CRPs, abundantly and predominantly expressed in the synergid cell, which are secreted to the surface of the egg apparatus. Moreover, they showed activity in vitro to attract competent pollen tubes of their own species and were named as LUREs. Injection of morpholino antisense oligomers against the LUREs impaired pollen tube attraction, supporting the finding that LUREs are the attractants derived from the synergid cells of T. fournieri.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chromosomal rearrangements and speciation.

            Several authors have proposed that speciation frequently occurs when a population becomes fixed for one or more chromosomal rearrangements that reduce fitness when they are heterozygous. This hypothesis has little theoretical support because mutations that cause a large reduction in fitness can be fixed through drift only in small, inbred populations. Moreover, the effects of chromosomal rearrangements on fitness are unpredictable and vary significantly between plants and animals. I argue that rearrangements reduce gene flow more by suppressing recombination and extending the effects of linked isolation genes than by reducing fitness. This unorthodox perspective has significant implications for speciation models and for the outcomes of contact between neospecies and their progenitor(s).
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Interspecific Pollen Transfer: Magnitude, Prevalence and Consequences for Plant Fitness

                Bookmark

                Author and article information

                Journal
                Annual Review of Plant Biology
                Annu. Rev. Plant Biol.
                Annual Reviews
                1543-5008
                1545-2123
                June 17 2021
                June 17 2021
                : 72
                : 1
                : 615-639
                Affiliations
                [1 ]Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA;,
                Article
                10.1146/annurev-arplant-080620-102159
                34143652
                fa7a85c8-a893-455b-8248-d7e3e821beb7
                © 2021
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content799

                Cited by21

                Most referenced authors1,099