3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      No-Observed-Effect Level of Silver Phosphate in Carbonate Apatite Artificial Bone on Initial Bone Regeneration

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Article: not found

          Treatment of infections associated with surgical implants.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Strain specificity in antimicrobial activity of silver and copper nanoparticles.

            The antimicrobial properties of silver and copper nanoparticles were investigated using Escherichia coli (four strains), Bacillus subtilis and Staphylococcus aureus (three strains). The average sizes of the silver and copper nanoparticles were 3 nm and 9 nm, respectively, as determined through transmission electron microscopy. Energy-dispersive X-ray spectra of silver and copper nanoparticles revealed that while silver was in its pure form, an oxide layer existed on the copper nanoparticles. The bactericidal effect of silver and copper nanoparticles were compared based on diameter of inhibition zone in disk diffusion tests and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of nanoparticles dispersed in batch cultures. Bacterial sensitivity to nanoparticles was found to vary depending on the microbial species. Disk diffusion studies with E. coli and S. aureus revealed greater effectiveness of the silver nanoparticles compared to the copper nanoparticles. B. subtilis depicted the highest sensitivity to nanoparticles compared to the other strains and was more adversely affected by the copper nanoparticles. Good correlation was observed between MIC and MBC (r2=0.98) measured in liquid cultures. For copper nanoparticles a good negative correlation was observed between the inhibition zone observed in disk diffusion test and MIC/MBC determined based on liquid cultures with the various strains (r2=-0.75). Although strain-specific variation in MIC/MBC was negligible for S. aureus, some strain-specific variation was observed for E. coli.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Bone grafts and biomaterials substitutes for bone defect repair: A review

              Bone grafts have been predominated used to treat bone defects, delayed union or non-union, and spinal fusion in orthopaedic clinically for a period of time, despite the emergency of synthetic bone graft substitutes. Nevertheless, the integration of allogeneic grafts and synthetic substitutes with host bone was found jeopardized in long-term follow-up studies. Hence, the enhancement of osteointegration of these grafts and substitutes with host bone is considerably important. To address this problem, addition of various growth factors, such as bone morphogenetic proteins (BMPs), parathyroid hormone (PTH) and platelet rich plasma (PRP), into structural allografts and synthetic substitutes have been considered. Although clinical applications of these factors have exhibited good bone formation, their further application was limited due to high cost and potential adverse side effects. Alternatively, bioinorganic ions such as magnesium, strontium and zinc are considered as alternative of osteogenic biological factors. Hence, this paper aims to review the currently available bone grafts and bone substitutes as well as the biological and bio-inorganic factors for the treatments of bone defect.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ACS Infectious Diseases
                ACS Infect. Dis.
                American Chemical Society (ACS)
                2373-8227
                2373-8227
                January 14 2022
                December 07 2021
                January 14 2022
                : 8
                : 1
                : 159-169
                Affiliations
                [1 ]Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
                Article
                10.1021/acsinfecdis.1c00480
                34875165
                cd57eaf1-915e-4571-8fb7-99efcf3c8bc2
                © 2022

                https://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article