147
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bone grafts and biomaterials substitutes for bone defect repair: A review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bone grafts have been predominated used to treat bone defects, delayed union or non-union, and spinal fusion in orthopaedic clinically for a period of time, despite the emergency of synthetic bone graft substitutes. Nevertheless, the integration of allogeneic grafts and synthetic substitutes with host bone was found jeopardized in long-term follow-up studies. Hence, the enhancement of osteointegration of these grafts and substitutes with host bone is considerably important. To address this problem, addition of various growth factors, such as bone morphogenetic proteins (BMPs), parathyroid hormone (PTH) and platelet rich plasma (PRP), into structural allografts and synthetic substitutes have been considered. Although clinical applications of these factors have exhibited good bone formation, their further application was limited due to high cost and potential adverse side effects. Alternatively, bioinorganic ions such as magnesium, strontium and zinc are considered as alternative of osteogenic biological factors. Hence, this paper aims to review the currently available bone grafts and bone substitutes as well as the biological and bio-inorganic factors for the treatments of bone defect.

          Graphical abstract

          Most common specific targets of relevant bioinorganic ions in their role of therapeutic agents revealed by current researches [273].

          Highlights

          • Autologous bone graft is the gold standard clinical material for bone regeneration in term of osteoconduction and osteoinduction. However, limited availability and donor site morbidity are concerned.

          • Bone allograft becomes to the second higher option for orthopaedic procedures due to the availability in various forms and large quantities. Unfortunately, reduced osteoinductivity may lead to inferior healing as compared with the use of autologous grafts.

          • Hence, synthetic bone substitutes and biological factors e.g. calcium phosphate (CaP) cements and ceramics, hydroxyapatite (HAp) and recombinant human bone morphological proteins (rhBMP-2 and rhBMP-7) are considered, either alone or combined, for bone tissue regeneration.

          Related collections

          Most cited references318

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis.

          Once-daily injections of parathyroid hormone or its amino-terminal fragments increase bone formation and bone mass without causing hypercalcemia, but their effects on fractures are unknown. We randomly assigned 1637 postmenopausal women with prior vertebral fractures to receive 20 or 40 microg of parathyroid hormone (1-34) or placebo, administered subcutaneously by the women daily. We obtained vertebral radiographs at base line and at the end of the study (median duration of observation, 21 months) and performed serial measurements of bone mass by dual-energy x-ray absorptiometry. New vertebral fractures occurred in 14 percent of the women in the placebo group and in 5 percent and 4 percent, respectively, of the women in the 20-microg and 40-microg parathyroid hormone groups; the respective relative risks of fracture in the 20-microg and 40-microg groups, as compared with the placebo group, were 0.35 and 0.31 (95 percent confidence intervals, 0.22 to 0.55 and 0.19 to 0.50). New nonvertebral fragility fractures occurred in 6 percent of the women in the placebo group and in 3 percent of those in each parathyroid hormone group (relative risk, 0.47 and 0.46, respectively [95 percent confidence intervals, 0.25 to 0.88 and 0.25 to 0.861). As compared with placebo, the 20-microg and 40-microg doses of parathyroid hormone increased bone mineral density by 9 and 13 more percentage points in the lumbar spine and by 3 and 6 more percentage points in the femoral neck; the 40-microg dose decreased bone mineral density at the shaft of the radius by 2 more percentage points. Both doses increased total-body bone mineral by 2 to 4 more percentage points than did placebo. Parathyroid hormone had only minor side effects (occasional nausea and headache). Treatment of postmenopausal osteoporosis with parathyroid hormone (1-34) decreases the risk of vertebral and nonvertebral fractures; increases vertebral, femoral, and total-body bone mineral density; and is well tolerated. The 40-microg dose increased bone mineral density more than the 20-microg dose but had similar effects on the risk of fracture and was more likely to have side effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Bone regeneration: current concepts and future directions

            Bone regeneration is a complex, well-orchestrated physiological process of bone formation, which can be seen during normal fracture healing, and is involved in continuous remodelling throughout adult life. However, there are complex clinical conditions in which bone regeneration is required in large quantity, such as for skeletal reconstruction of large bone defects created by trauma, infection, tumour resection and skeletal abnormalities, or cases in which the regenerative process is compromised, including avascular necrosis, atrophic non-unions and osteoporosis. Currently, there is a plethora of different strategies to augment the impaired or 'insufficient' bone-regeneration process, including the 'gold standard' autologous bone graft, free fibula vascularised graft, allograft implantation, and use of growth factors, osteoconductive scaffolds, osteoprogenitor cells and distraction osteogenesis. Improved 'local' strategies in terms of tissue engineering and gene therapy, or even 'systemic' enhancement of bone repair, are under intense investigation, in an effort to overcome the limitations of the current methods, to produce bone-graft substitutes with biomechanical properties that are as identical to normal bone as possible, to accelerate the overall regeneration process, or even to address systemic conditions, such as skeletal disorders and osteoporosis.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Nature’s hierarchical materials

                Bookmark

                Author and article information

                Journal
                Bioact Mater
                Bioact Mater
                Bioactive Materials
                KeAi Publishing
                2452-199X
                07 June 2017
                December 2017
                07 June 2017
                : 2
                : 4
                : 224-247
                Affiliations
                [a ]Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
                [b ]Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, 1 Haiyuan 1st Road, Futian District, Shenzhen, China
                Author notes
                []Corresponding author. Department of Orthopaedics and Traumatology, The University of Hong Kong, 5/F, Professorial Block, Queen Mary Hospital, Pokfulam, Hong Kong, China.
                Article
                S2452-199X(17)30046-4
                10.1016/j.bioactmat.2017.05.007
                5935655
                29744432
                4840cb16-c40d-4037-b16a-43966fa552f6
                © 2017 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 18 April 2017
                : 19 May 2017
                : 19 May 2017
                Categories
                Bioactive inorganics: ceramics, glasses and carbon-based material

                fracture healing,bone grafts and substitutes,growth factors,bioinorganic ions

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content268

                Cited by554

                Most referenced authors3,564