39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic Variants of the FADS Gene Cluster and ELOVL Gene Family, Colostrums LC-PUFA Levels, Breastfeeding, and Child Cognition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Breastfeeding effects on cognition are attributed to long-chain polyunsaturated fatty acids (LC-PUFAs), but controversy persists. Genetic variation in fatty acid desaturase (FADS) and elongase (ELOVL) enzymes has been overlooked when studying the effects of LC-PUFAs supply on cognition. We aimed to: 1) to determine whether maternal genetic variants in the FADS cluster and ELOVL genes contribute to differences in LC-PUFA levels in colostrum; 2) to analyze whether these maternal variants are related to child cognition; and 3) to assess whether children's variants modify breastfeeding effects on cognition.

          Methods

          Data come from two population-based birth cohorts (n = 400 mother-child pairs from INMA-Sabadell; and n = 340 children from INMA-Menorca). LC-PUFAs were measured in 270 colostrum samples from INMA-Sabadell. Tag SNPs were genotyped both in mothers and children (13 in the FADS cluster, 6 in ELOVL2, and 7 in ELOVL5). Child cognition was assessed at 14 mo and 4 y using the Bayley Scales of Infant Development and the McCarthy Scales of Children's Abilities, respectively.

          Results

          Children of mothers carrying genetic variants associated with lower FADS1 activity (regulating AA and EPA synthesis), higher FADS2 activity (regulating DHA synthesis), and with higher EPA/AA and DHA/AA ratios in colostrum showed a significant advantage in cognition at 14 mo (3.5 to 5.3 points). Not being breastfed conferred an 8- to 9-point disadvantage in cognition among children GG homozygote for rs174468 (low FADS1 activity) but not among those with the A allele. Moreover, not being breastfed resulted in a disadvantage in cognition (5 to 8 points) among children CC homozygote for rs2397142 (low ELOVL5 activity), but not among those carrying the G allele.

          Conclusion

          Genetically determined maternal supplies of LC-PUFAs during pregnancy and lactation appear to be crucial for child cognition. Breastfeeding effects on cognition are modified by child genetic variation in fatty acid desaturase and elongase enzymes.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: not found
          • Article: not found

          Mendelian randomization: prospects, potentials, and limitations.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome-Wide Association Study of Plasma Polyunsaturated Fatty Acids in the InCHIANTI Study

            Introduction Polyunsaturated fatty acids (PUFA) refer to the class of fatty acids with multiple desaturations in the aliphatic tail. Short chain PUFA (up to 16 carbons) are synthesized endogenously by fatty acid synthase. Long chain PUFA are fatty acids of 18 carbons or more in length with two or more double bonds. Depending on the position of the first double bond proximate to the methyl end, PUFA are classified as n-6 or n-3. Long chain PUFA are either directly absorbed from food or synthesized from the two essential fatty acids linoleic acid (LA; 18:2n-6) and alpha-linolenic acid (ALA; 18:3n-3) through a series of desaturation and elongation processes [1]. The initial step in PUFA biosynthesis is the desaturation of ALA and LA by the enzyme d6-desaturase (FADS2; GeneID 9415) (Figure 1). PUFA modulate inflammatory response through a number of different mechanisms including modulation of cyclooxygenase and lipoxigenase activity [2]. Cyclooxygenase and lipoxigenase are essential for production of eicosanoids and resolvins [2]–[4]. Since n-3 and n-6 fatty acids compete for the same metabolic pathway and produce eicosanoids with differing effects, it has been theorized that the balance of the two classes of PUFA may be important in the pathogenesis of inflammatory diseases. 10.1371/journal.pgen.1000338.g001 Figure 1 The metabolic pathway of n-3 and n-6 fatty acids. The fatty acids examined in the study are indicated in bold. The dashed arrows indicate pathways absent in mammals. Epidemiological studies have shown that fatty acid consumption and plasma levels, in particular of the n-3 family, are associated with reduced risk of cardiovascular disease [5]–[7], diabetes [8]–[10], depression [11],[12], and dementia [13]. However, not all studies show significant associations and there has been inconsistencies in the direction of the associations especially for the n-6 acids [14],[15]. The different methods (dietary questionnaire or biomarkers) for accessing PUFA status may contribute to discrepant results [16]–[18]. The disadvantage of using dietary PUFA intake is the evidence of inaccuracies intrinsic in any reporting methods of dietary intake that plasma levels would circumvent. In addition, direct measures of PUFA reflect the cumulative effects of intake and endogenous metabolism. Dietary fatty acids can be converted into longer chain PUFA or stored for energy thus another reason for inconsistent results may be due the general lack of control for individual differences in metabolism once fatty acids are consumed. Previous studies have examined the association of genetic variants, especially polymorphisms in the FADS genes, on fatty acid concentrations in plasma and erythrocyte membranes [19]–[21]. There are 3 FADS (FADS1 [GeneID 3992] ,FADS2, and FADS3 [GeneID 3992]) clustered on chromosome 11. Variants in FADS1 and FADS2 have been consistently shown to be associated with PUFA concentrations. It is unknown whether other loci also determine fatty acid concentrations. To address this question, we conducted a genome-wide association study of plasma fatty acid concentration in participants in the InCHIANTI study. Results Linoleic acid (LA) constituted the highest proportion of total fatty acids followed by arachidonic acid (AA) (Table 1) The narrow heritability was highest for AA (37.7%) followed by LA (35.9%), eicosadienoic acid (EDA, 33.3%), alpha-linolenic acid (ALA, 28.1%), eicosapentanoic acid (EPA, 24.4%), and docosahexanoic acid (DHA,12.0%). For EDA, AA, and EPA, genome-wide significant signals fell in the FADS1/FADS2/FADS3 region on chromosome 11 (Figure 2, Figure 3, Table S1). Of these, the most significant SNP was rs174537 for AA (P = 5.95×10−46), where the variant explained 18.6% of the additive variance of AA concentrations. This SNP was significantly associated with EDA (P = 6.78×10−9), and EPA (P = 1.04×10−14). The association with LA (P = 5.58×10−7) and ALA (P = 2.76×10−5) did not reach genome-wide significance, and there was no association with DHA (P = 0.3188). Presence of the minor allele (T) was associated with lower concentrations of longer chain fatty acids (EDA, AA, EPA), but with higher concentrations of LA and ALA (Table 2). With the exception of DHA, the SNPs exhibiting the strongest evidence of association with the fatty acids examined in this study mapped to the FADS1, FADS2, and FADS3 cluster. The most significant SNP for DHA was on chromosome 12 within the SLC26A10 gene (GeneID 65012, rs2277324; PDHA = 2.65×10−9). In all cases, inclusion of the most significant SNP as a covariate in the model resulted in attenuation of the effect of the other SNPs in the region (Figure S1). Accordingly, associated SNPs in this region were in significant linkage disequilibrium with each other in the InCHIANTI sample (Figure S2). 10.1371/journal.pgen.1000338.g002 Figure 2 Genome-wide scans of omega-6 fatty acid profiles in InCHIANTI study. Genome-wide associations of plasma linoleic acid (A), eicasadienoic acids (B) and arachidonic acid (C) with 495,343 autosomal and X chromosome SNPs that passed quality control graphed by chromosome position and −log10 p-value. The most significant variant was within the FAD1/FAD2/FAD3 cluster on chromosome 11. The genes nearby or within the SNPs that were selected for replication in GOLDN are indicated. 10.1371/journal.pgen.1000338.g003 Figure 3 Genome-wide scans of omega-3 fatty acid profiles in InCHIANTI study. Genome-wide associations of plasma alpha linolenic acid (A), eicosapentanoic acid (B) and docasahexanoic acid (C) with 495,343 autosomal and X chromosome SNPs that passed quality control graphed by chromosome position and −log10 p-value. The most significant variant was within the FAD1/FAD2/FAD3 cluster on chromosome 11. The genes nearby or within the SNPs that were selected for replication in GOLDN are indicated. 10.1371/journal.pgen.1000338.t001 Table 1 Descriptive Characteristics of InCHIANTI and GOLDN study. Trait INCHIANTI GOLDN N (m/f) 1075 (485/590) 1076 (519/557) Age (years) 68.37 (15.5) 48.4 (16.4) BMI (kg/m2) 27.12 (4.1) 28.3 (5.6) Total Cholesterol (mg/dL) 213.62 (40.7) 190.1 (38.9) HDL Cholesterol (mg/dL) 55.98 (15.1) 47 (13.1) LDL Cholesterol (mg/dL) 133.08 (35.3) 121 (31.3) Triglyceride (mg/dL) 122.79 (65.1) 139.2 (117.3) Glucose (mg/dl) 94.23 (26.2) 101.6 (19.0) Linoleic Acida 24.8 (4.0) 12.9 (1.4) Linolenic Acida 0.4 (0.3) 0.1 (0.0) Eicosadienoic Acida 0.1 (0.1) N/A Arachidonic Acida 8.0 (1.9) 13.6 (1.2) Eicosapentanoic Acida 0.61 (0.2) 0.5 (0.3) Docosahexanoic Acida 2.29 (0.8) 3.0 (0.9) Total energy , kal/day 2000 (596) 2122 (1190) Dietary fat, % energy 30.9 (5.1) 35.4 (6.9) Values represent mean (SD). a Fatty acids are plasma concentrations (% total fatty acids) for InCHIANTI and erythrocytes concentration for GOLDN. 10.1371/journal.pgen.1000338.t002 Table 2 Associations of fatty acids and plasma lipids by rs174537 (FADS1) and rs953413 (ELOVL2) in InCHIANTI and GOLDN study. InCHIANTI GOLDN FADS: rs174537 G/G (n = 569) T/G (n = 414) T/T (n = 92) P G/G (n = 433) T/G (n = 495) T/T (n = 139) P Linoleic acid 24.27 (3.99) 25.24 (3.98) 25.88 (3.69) 5500 kcal in men and 4500kcal in women. Genotyping InCHIANTI: Genome-wide genotyping was performed using the Illumina Infinium HumanHap550 genotyping chip (chip version 1 and 3) as previously described [50]. The SNP quality control was assessed using GAINQC. The exclusion criteria for SNPs were minor allele frequency <1% (n = 25,422), genotyping completeness <99% (n = 23,610) and Hardy Weinberg-equilibrium (HWE) <0.0001 (n = 517). GOLDN: Five SNPs were selected for replication in the GOLDN study: rs953413, rs2277324, rs16940765, rs17718324 and rs174537. One of these, rs2277324, failed genotyping and therefore another SNP in high LD, rs923838 (r2 = 0.89 in hapmap), was used as a proxy for this SNP. DNA was extracted from blood samples and purified using commercial Puregene reagents (Gentra System, Inc.) following manufacturer’s instructions. SNPs were genotyped using the 5’nuclease allelic discrimination Taqman assay with allelic specific probes on the ABI Prism 7900HT Sequence Detection System (Applies Biosystems, Foster City, Calif, USA) according to standard laboratory protocols. The primers and probes were pre-designed (the assay -on -demand) by the manufacturer (Applied Biosystem) (Assay ID: FEN_rs174537: C___2269026_10, HRH4_rs16940765: C__32711739_10, SPARC_rs17718324: C__34334455_10, ELOVL2_rs953413: C___7617198_10, rs923828: C___2022671_10). Statistical Analysis InCHIANTI GWAS: Inverse normal transformation was applied to plasma fatty acid concentrations to avoid inflated type I error due to non-normality [51]. The genotypes were coded 0, 1 and 2 reflecting the number of copies of an allele being tested (additive genetic model). For X-chromosome analysis, the average phenotype of males hemizygous for a particular allele was treated assumed to match the average phenotype of females homozygous for the same allele. Association analysis was conducted by fitting simple regression test using the fastAssoc option in MERLIN [52]. Narrow heritability reflects the ratio of the trait’s additive variance to the total variance [51],[53]. In all the analyses, the models were adjusted for sex, age and age squared. The genomic control method was used to control for effects of population structure and cryptic relatedness [54]. An approximate genome-wide significance threshold of 1×10−7 (∼0.05/495343 SNPs) was used. For each fatty acid concentration, a second analysis included the most significant SNP from the first pass analysis as a covariate. Linkage disequilibrium coefficints within the region of interest were calculated using GOLD [55]. For the other phenotypes (total cholesterol, triglycerides, LDL-cholesterol, HDL-cholesterol and BMI), the traits were normalized either by natural log or square root transformation when necessary. Associations for each SNP were investigated using the general linear model (GLM) procedure in SAS. GOLDN: Inverse normal transformation was applied to erythrocyte membrane fatty acid concentration to achieve approximate normality. For the additive model, genotype coding was based on the number of variant alleles at the polymorphic site. With no significant sex modification observed, men and women were analyzed together. We used the generalized estimating equation (GEE) linear regression with exchangeable correlation structure as implemented in the GENMOD procedure in SAS (Windows version 9.0, SAS Institute, Cary, NC) to adjust for correlated observations due to familial relationships. Potential confounding factors included study center, age, sex, BMI, smoking (never, former and current smoker), alcohol consumption (non-drinker and current drinker), physical activity, drugs for lowering cholesterol, diabetes and hypertension and hormones. A two-tailed P value of <0.05 was considered to be statistically significant. Supporting Information Figure S1 Q-Q plots for (A) linolenic acid, (B) eicosadienoic acid (C) arachidonic acid, (D), alpha-linolenic acid, (E), eicsapentanoic acid, and (F) docsahexanoic acid from the first analysis (red circles) and the second analysis after including the most significant SNP (blue circles). (0.52 MB TIF) Click here for additional data file. Figure S2 The associations in the fatty acid desaturase clusters on chromosome 11 are displayed. (A) The −log10 pvalues for each fatty acid concentration within the FADS cluster on chromosome 11. The y axis is truncated at 14, the most significant SNP for arachidonic acid rs174537 at −log10 value of 45. (B) The genes that lie +/− 100kb of rs174537 and (C) pairwise LD (r2) in the region ranging from high (red), intermediate (green), to low (blue) in the InCHIANTI study. (0.76 MB TIF) Click here for additional data file. Figure S3 The associations in the elongation of very long fatty acid 2 gene are displayed. (A) The −log10 pvalues for each fatty acid concentration around the ELOVL2 gene. (B) The genes that lie +/− 100kb of rs953413 and (C) pairwise LD (r2) in the region ranging from high (red), intermediate (green), to low (blue) in the InCHIANTI study. (0.53 MB TIF) Click here for additional data file. Table S1 Top 10 non-redundant SNPs for each plasma fatty acid concentrations. (0.15 MB DOC) Click here for additional data file.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic variants of the FADS1 FADS2 gene cluster are associated with altered (n-6) and (n-3) essential fatty acids in plasma and erythrocyte phospholipids in women during pregnancy and in breast milk during lactation.

              The enzymes encoded by fatty acid desaturase (FADS) 1 and FADS2 are rate-limiting enzymes in the desaturation of linoleic acid [LA; 18:2(n-6)] to arachidonic acid [ARA; 20:4(n-6)], and alpha-linolenic acid [ALA; 18:3(n-3)] to eicosapentaenoic acid [EPA; 20:5(n-3)] and docosahexaenoic acid [DHA; 22:6(n-3)]. ARA, EPA, and DHA play central roles in infant growth, neural development, and immune function. The maternal ARA, EPA, and DHA status in gestation influences maternal-to-infant transfer and breast milk provides fatty acids for infants after birth. We determined if single nucleotide polymorphisms in FADS1 and FADS2 influence plasma phospholipid and erythrocyte ethanolamine phosphoglyceride (EPG) (n-6) and (n-3) fatty acids of women in pregnancy or their breast milk during lactation. We genotyped rs174553, rs99780, rs174575, and rs174583 in the FADS1 FADS2 gene cluster and analyzed plasma and erythrocyte fatty acids and dietary intake for 69 pregnant women and breast milk for a subset of 54 women exclusively breast-feeding at 1 mo postpartum. Minor allele homozygotes of rs174553(GG), rs99780(TT), and rs174583(TT) had lower ARA but higher LA in plasma phospholipids and erythrocyte EPG and decreased (n-6) and (n-3) fatty acid product:precursor ratios at 16 and 36 wk of gestation. Breast milk fatty acids were influenced by genotype, with significantly lower 14:0, ARA, and EPA but higher 20:2(n-6) in the minor allele homozygotes of rs174553(GG), rs99780(TT), and rs174583(TT) and lower ARA, EPA, 22:5(n-3), and DHA in the minor allele homozygotes G/G of rs174575. We showed that genetic variants of FADS1 and FADS2 influence blood lipid and breast milk essential fatty acids in pregnancy and lactation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                23 February 2011
                : 6
                : 2
                : e17181
                Affiliations
                [1 ]Center for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
                [2 ]Hospital del Mar Research Institute (IMIM), Barcelona, Catalonia, Spain
                [3 ]CIBER Epidemiología y Salud Pública, Barcelona, Catalonia, Spain
                [4 ]Genetic Causes of Disease Group, Genes and Disease Program, Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain
                [5 ]Area de Salud de Menorca, IB-SALUT, Menorca, Spain
                [6 ]Department of Nutrition and Food Science, Faculty of Pharmacy, University of Barcelona, Barcelona, Catalonia, Spain
                [7 ]Genetics Unit, Department of Health and Experimental Life Sciences, Pompeu Fabra University (UPF), Barcelona, Catalonia, Spain
                [8 ]Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Catalonia, Spain
                Hospital Universitario 12 de Octubre, Spain
                Author notes

                Conceived and designed the experiments: EM MB JRG MT XE JS. Performed the experiments: MB XE. Analyzed the data: EM JRG. Contributed reagents/materials/analysis tools: MB CMP CLS XE. Wrote the manuscript: EM MB. Critical revision of the manuscript for important intellectual content: MG MT RGE JJ JF MM MV CMP JS.

                Article
                PONE-D-10-02744
                10.1371/journal.pone.0017181
                3044172
                21383846
                cce0775a-4bed-4699-a61f-a0b9ec53616e
                Morales et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 September 2010
                : 22 January 2011
                Page count
                Pages: 9
                Categories
                Research Article
                Biology
                Biochemistry
                Lipids
                Fatty Acids
                Lipid Metabolism
                Metabolism
                Lipid Metabolism
                Genetics
                Human Genetics
                Genetic Association Studies
                Neuroscience
                Cognitive Neuroscience
                Cognition
                Medicine
                Epidemiology
                Genetic Epidemiology
                Mental Health
                Psychology
                Cognitive Psychology
                Human Intelligence
                Neurology
                Cognitive Neurology
                Developmental and Pediatric Neurology
                Nutritional Disorders
                Nutrition
                Malnutrition
                Obstetrics and Gynecology
                Breast Feeding
                Pediatrics
                Child Development
                Developmental and Pediatric Neurology
                Neonatalology
                Public Health
                Child Health
                Social and Behavioral Sciences
                Psychology
                Cognitive Psychology
                Human Intelligence

                Uncategorized
                Uncategorized

                Comments

                Comment on this article