9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Regulatory Functions and the Mechanisms of Long Non-Coding RNAs in Cervical Cancer

      ,
      Cells
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cervical cancer is one of the leading causes of death in gynecology cancer worldwide. High-risk human papillomaviruses (HPVs) are the major etiological agents for cervical cancer. Still, other factors also contribute to cervical cancer development because these cancers commonly arise decades after initial exposure to HPV. So far, the molecular mechanisms underlying the pathogenesis of cervical cancer are still quite limited, and a knowledge gap needs to be filled to help develop novel strategies that will ultimately facilitate the development of therapies and improve cervical cancer patient outcomes. Long non-coding RNAs (lncRNAs) have been increasingly shown to be involved in gene regulation, and the relevant role of lncRNAs in cervical cancer has recently been investigated. In this review, we summarize the recent progress in ascertaining the biological functions of lncRNAs in cervical cancer from the perspective of cervical cancer proliferation, invasion, and metastasis. In addition, we provide the current state of knowledge by discussing the molecular mechanisms underlying the regulation and emerging role of lncRNAs in the pathogenesis of cervical cancer. Comprehensive and deeper insights into lncRNA-mediated alterations and interactions in cellular events will help develop novel strategies to treat patients with cervical cancer.

          Related collections

          Most cited references163

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene regulation by long non-coding RNAs and its biological functions

            Evidence accumulated over the past decade shows that long non-coding RNAs (lncRNAs) are widely expressed and have key roles in gene regulation. Recent studies have begun to unravel how the biogenesis of lncRNAs is distinct from that of mRNAs and is linked with their specific subcellular localizations and functions. Depending on their localization and their specific interactions with DNA, RNA and proteins, lncRNAs can modulate chromatin function, regulate the assembly and function of membraneless nuclear bodies, alter the stability and translation of cytoplasmic mRNAs and interfere with signalling pathways. Many of these functions ultimately affect gene expression in diverse biological and physiopathological contexts, such as in neuronal disorders, immune responses and cancer. Tissue-specific and condition-specific expression patterns suggest that lncRNAs are potential biomarkers and provide a rationale to target them clinically. In this Review, we discuss the mechanisms of lncRNA biogenesis, localization and functions in transcriptional, post-transcriptional and other modes of gene regulation, and their potential therapeutic applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular functions of long noncoding RNAs

              A diverse catalog of long noncoding RNAs (lncRNAs), which lack protein-coding potential, are transcribed from the mammalian genome. They are emerging as important regulators in gene expression networks by controlling nuclear architecture and transcription in the nucleus and by modulating mRNA stability, translation and post-translational modifications in the cytoplasm. In this Review, we highlight recent progress in cellular functions of lncRNAs at the molecular level in mammalian cells.
                Bookmark

                Author and article information

                Contributors
                Journal
                CELLC6
                Cells
                Cells
                MDPI AG
                2073-4409
                April 2022
                March 29 2022
                : 11
                : 7
                : 1149
                Article
                10.3390/cells11071149
                35406713
                cc5b599c-9e9c-4d02-82d3-b9d45adeeb63
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article