2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimizing Crop Production with Bacterial Inputs: Insights into Chemical Dialogue between Sphingomonas sediminicola and Pisum sativum

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The use of biological inputs is an interesting approach to optimize crop production and reduce the use of chemical inputs. Understanding the chemical communication between bacteria and plants is critical to optimizing this approach. Recently, we have shown that Sphingomonas (S.) sediminicola can improve both nitrogen supply and yield in pea. Here, we used biochemical methods and untargeted metabolomics to investigate the chemical dialog between S. sediminicola and pea. We also evaluated the metabolic capacities of S. sediminicola by metabolic profiling. Our results showed that peas release a wide range of hexoses, organic acids, and amino acids during their development, which can generally recruit and select fast-growing organisms. In the presence of S. sediminicola, a more specific pattern of these molecules took place, gradually adapting to the metabolic capabilities of the bacterium, especially for pentoses and flavonoids. In turn, S. sediminicola is able to produce several compounds involved in cell differentiation, biofilm formation, and quorum sensing to shape its environment, as well as several molecules that stimulate pea growth and plant defense mechanisms.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid determination of free proline for water-stress studies

          Plant and Soil, 39(1), 205-207
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global consequences of land use.

              Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet's resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                MICRKN
                Microorganisms
                Microorganisms
                MDPI AG
                2076-2607
                July 2023
                July 21 2023
                : 11
                : 7
                : 1847
                Article
                10.3390/microorganisms11071847
                cc501cfc-55e6-4595-8761-a83db687efd5
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article