13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Complex ovarian defects lead to infertility in Etv5-/- female mice.

      Molecular Human Reproduction
      Animals, Aromatase, genetics, metabolism, Cholesterol Side-Chain Cleavage Enzyme, Chorionic Gonadotropin, DNA-Binding Proteins, Estradiol, pharmacology, Female, Fertilization, physiology, Male, Mice, Mice, Knockout, Ovary, abnormalities, cytology, drug effects, Ovulation, Proto-Oncogene Proteins c-ets, Receptors, LH, Sexual Behavior, Animal, Steroid 17-alpha-Hydroxylase, Transcription Factors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Etv5 is a member of the Etv4 subfamily of Ets transcription factors. In female mice, Etv5 was previously shown to be expressed in the mouse ovary. In this work, we show that Etv5-/- female mice are infertile due to a complex reproductive phenotype. Defects in the ovarian tissue architecture were noted as early as 2 weeks of age in Etv5-/- mice. Adult Etv5-/- female mice show decreased ovulation and no interest in mating even after gonadotrophin treatment. Histological abnormalities were also noted in Etv5-/- ovaries. Injection of 17β-estradiol to gonadotrophin-treated Etv5-/- mice significantly increased ovulation, mating and fertilization rates. However, 2-cell embryos of Etv5-/- females show compromised development, suggesting a role for Etv5 in the developmental competence of embryos. Expression of aromatase (CYP11a1), 17α-hydroxylase/17,20 lyase/17,20 desmolase (CYP17a1), side-chain-cleaving enzyme (CYP19a1) and luteinizing hormone/choriogonadotropin receptor mRNAs was not significantly altered in Etv5-/- ovaries. Collectively, our results suggest that Etv5 is important for the developmental competence of germ cells and the regulation of responses to steroid hormones in female mice. © The Author 2011. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.

          Related collections

          Author and article information

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content124

          Cited by7