17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nucleosides for the treatment of respiratory RNA virus infections

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Influenza virus, respiratory syncytial virus, human metapneumovirus, parainfluenza virus, coronaviruses, and rhinoviruses are among the most common viruses causing mild seasonal colds. These RNA viruses can also cause lower respiratory tract infections leading to bronchiolitis and pneumonia. Young children, the elderly, and patients with compromised cardiac, pulmonary, or immune systems are at greatest risk for serious disease associated with these RNA virus respiratory infections. In addition, swine and avian influenza viruses, together with severe acute respiratory syndrome-associated and Middle Eastern respiratory syndrome coronaviruses, represent significant pandemic threats to the general population. In this review, we describe the current medical need resulting from respiratory infections caused by RNA viruses, which justifies drug discovery efforts to identify new therapeutic agents. The RNA polymerase of respiratory viruses represents an attractive target for nucleoside and nucleotide analogs acting as inhibitors of RNA chain synthesis. Here, we present the molecular, biochemical, and structural fundamentals of the polymerase of the four major families of RNA respiratory viruses: Orthomyxoviridae, Pneumoviridae/Paramyxoviridae, Coronaviridae, and Picornaviridae. We summarize past and current efforts to develop nucleoside and nucleotide analogs as antiviral agents against respiratory virus infections. This includes molecules with very broad antiviral spectrum such as ribavirin and T-705 (favipiravir), and others targeting more specifically one or a few virus families. Recent advances in our understanding of the structure(s) and function(s) of respiratory virus polymerases will likely support the discovery and development of novel nucleoside analogs.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: not found
          • Article: not found

          Respiratory syncytial virus and parainfluenza virus.

          C Hall (2001)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Human Coronaviruses: A Review of Virus–Host Interactions

            Human coronaviruses (HCoVs) are known respiratory pathogens associated with a range of respiratory outcomes. In the past 14 years, the onset of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) have thrust HCoVs into spotlight of the research community due to their high pathogenicity in humans. The study of HCoV-host interactions has contributed extensively to our understanding of HCoV pathogenesis. In this review, we discuss some of the recent findings of host cell factors that might be exploited by HCoVs to facilitate their own replication cycle. We also discuss various cellular processes, such as apoptosis, innate immunity, ER stress response, mitogen-activated protein kinase (MAPK) pathway and nuclear factor kappa B (NF-κB) pathway that may be modulated by HCoVs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit.

              The influenza virus polymerase, a heterotrimer composed of three subunits, PA, PB1 and PB2, is responsible for replication and transcription of the eight separate segments of the viral RNA genome in the nuclei of infected cells. The polymerase synthesizes viral messenger RNAs using short capped primers derived from cellular transcripts by a unique 'cap-snatching' mechanism. The PB2 subunit binds the 5' cap of host pre-mRNAs, which are subsequently cleaved after 10-13 nucleotides by the viral endonuclease, hitherto thought to reside in the PB2 (ref. 5) or PB1 (ref. 2) subunits. Here we describe biochemical and structural studies showing that the amino-terminal 209 residues of the PA subunit contain the endonuclease active site. We show that this domain has intrinsic RNA and DNA endonuclease activity that is strongly activated by manganese ions, matching observations reported for the endonuclease activity of the intact trimeric polymerase. Furthermore, this activity is inhibited by 2,4-dioxo-4-phenylbutanoic acid, a known inhibitor of the influenza endonuclease. The crystal structure of the domain reveals a structural core closely resembling resolvases and type II restriction endonucleases. The active site comprises a histidine and a cluster of three acidic residues, conserved in all influenza viruses, which bind two manganese ions in a configuration similar to other two-metal-dependent endonucleases. Two active site residues have previously been shown to specifically eliminate the polymerase endonuclease activity when mutated. These results will facilitate the optimisation of endonuclease inhibitors as potential new anti-influenza drugs.
                Bookmark

                Author and article information

                Journal
                Antivir Chem Chemother
                Antivir. Chem. Chemother
                AVC
                spavc
                Antiviral Chemistry & Chemotherapy
                SAGE Publications (Sage UK: London, England )
                0956-3202
                2040-2066
                21 March 2018
                2018
                : 26
                : 2040206618764483
                Affiliations
                [1-2040206618764483]Ringgold 333755, universityAlios BioPharma, Inc.; , a Janssen Pharmaceutical Company of Johnson & Johnson, South San Francisco, USA
                Author notes
                [*]Jerome Deval, Alios BioPharma, Inc., a Janssen Pharmaceutical Company of Johnson & Johnson, 260 East Grand Ave, South San Francisco, CA 94080, USA. Email: jdeval@ 123456its.jnj.com
                Article
                10.1177_2040206618764483
                10.1177/2040206618764483
                5890544
                29562753
                cb7c90aa-9704-48bb-a91d-0f365251b9be
                © The Author(s) 2018

                Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 19 September 2017
                : 7 February 2018
                Funding
                Funded by: Janssen Research and Development, FundRef https://doi.org/10.13039/100005205;
                Categories
                Original Article
                Custom metadata
                January-December 2018

                respiratory syncytial virus,coronavirus,picornavirus,rna-dependent rna polymerase,nucleoside analog,rhinovirus,influenza,antiviral

                Comments

                Comment on this article