18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optical properties of iron-based superconductor LiFeAs single crystal

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have measured the reflectivity spectra of the iron based superconductor LiFeAs (Tc = 17.6 K) in the temperature range from 4 to 300 K. In the superconducting state (T < Tc), the clear opening of the optical absorption gap was observed below 25 cm-1, indicating an isotropic full gap formation. In the normal state (T > Tc), the optical conductivity spectra display a typical metallic behavior with the Drude type spectra at low frequencies, but we found that the introduction of the two Drude components best fits the data, indicating the multiband nature of this superconductor. A theoretical analysis of the low temperature data (T=4K < Tc) also suggests that two superconducting gaps best fit the data and their values were estimated as {\Delta}1 = 1.59 meV and {\Delta}2 = 3.15 meV, respectively. Using the Ferrell-Glover-Tinkham (FGT) sum rule and dielectric function {\epsilon}1({\omega}), the superconducting plasma frequency ({\omega}ps) is consistently estimated to be 6,665 cm-1, implying that about 59 % of the free carriers in the normal state condenses into the SC condensate. To investigate the various interband transition processes (for {\omega} > 200 cm-1), we have also performed the local-density approximation (LDA) band calculation and calculated the optical spectra of the interband transitions. The theoretical results provided a qualitative agreement with the experimental data below 4000 cm-1

          Related collections

          Author and article information

          Journal
          04 January 2013
          2013-07-01
          Article
          10.1088/1367-2630/15/7/073029
          1301.0694
          cb767ccf-4020-4332-b3cd-5aad0847bed8

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          New Journal of Physics 15 (2013) 073029
          19 pages, 5 figures. This paper has been accepted for publication in New Journal of Physics
          cond-mat.supr-con cond-mat.str-el

          Comments

          Comment on this article