Search for authorsSearch for similar articles
20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Comparison of the properties of CLCA1 generated currents and I(Cl(Ca)) in murine portal vein smooth muscle cells.

      1 , , ,
      The Journal of physiology
      Wiley

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Calcium-activated chloride currents (I(Cl(Ca))) have been recorded in various smooth muscle cells but, to date, there has been no information as to the molecular nature of the channel underlying this conductance. We have characterised native I(Cl(Ca)) in freshly dispersed smooth muscle cells isolated from murine portal vein using whole-cell voltage clamp. I(Cl(Ca)) exhibited time-dependent activation at depolarised potentials and rapid deactivation upon repolarisation. The reversal potential of I(Cl(Ca)) was close to the theoretical equilibrium potential (E(Cl)) and was shifted by replacement of external Cl- by SCN- or isethionate. Dithiothreitol (DTT, 1 mM), a blocker of CLCA1, had no effect on the I(Cl(Ca)) current in myocytes. RT-PCR demonstrated the expression of mCLCA1 transcripts, but not mCLCA3 transcripts, in various murine smooth muscle cells including portal vein, as well as cardiomyocytes, and the levels of mCLCA1 transcriptional expression were quantified by real time quantitative RT-PCR. Stable transfection of HEK293 cells with the cDNA encoding mCLCA1 cloned from murine portal vein smooth muscle yielded a current with notable differences in Ca2+ sensitivity, channel kinetics and modulation by DTT from the native I(Cl(Ca)). However, there was some similarity in the pore properties and these data suggest that mCLCA1 alone does not comprise the Cl- channel in portal vein smooth muscle cells.

          Related collections

          Author and article information

          Journal
          J Physiol
          The Journal of physiology
          Wiley
          0022-3751
          0022-3751
          Feb 15 2002
          : 539
          : Pt 1
          Affiliations
          [1 ] Department of Physiology and Cell Biology and COBRE Program, University of Nevada School of Medicine, Reno, Nevada 89557-0046, USA.
          Article
          PHY_13170
          10.1113/jphysiol.2001.013170
          2290135
          11850505
          cb4d336d-cedc-4329-ba77-fdafd1b50347
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content506

          Cited by6