14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Uncovering Divergence of Rice Exon Junction Complex Core Heterodimer Gene Duplication Reveals Their Essential Role in Growth, Development, and Reproduction.

      1 , 2
      Plant physiology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The exon junction complex (EJC) plays important developmental roles in animals; however, its role in plants is not well known. Here, we show various aspects of the divergence of each duplicated MAGO NASHI (MAGO) and Y14 gene pair in rice (Oryza sativa) encoding the putative EJC core subunits that form the obligate MAGO-Y14 heterodimers. OsMAGO1, OsMAGO2, and OsY14a were constitutively expressed in all tissues, while OsY14b was predominantly expressed in embryonic tissues. OsMAGO2 and OsY14b were more sensitive to different stresses than OsMAGO1 and OsY14a, and their encoded protein pair shared 93.8% and 46.9% sequence identity, respectively. Single MAGO down-regulation in rice did not lead to any phenotypic variation; however, double gene knockdowns generated short rice plants with abnormal flowers, and the stamens of these flowers showed inhibited degradation and absorption of both endothecium and tapetum, suggesting that OsMAGO1 and OsMAGO2 were functionally redundant. OsY14a knockdowns phenocopied OsMAGO1OsMAGO2 mutants, while down-regulation of OsY14b failed to induce plantlets, suggesting the functional specialization of OsY14b in embryogenesis. OsMAGO1OsMAGO2OsY14a triple down-regulation enhanced the phenotypes of OsMAGO1OsMAGO2 and OsY14a down-regulated mutants, indicating that they exert developmental roles in the MAGO-Y14 heterodimerization mode. Modified gene expression was noted in the altered developmental pathways in these knockdowns, and the transcript splicing of UNDEVELOPED TAPETUM1 (OsUDT1), a key regulator in stamen development, was uniquely abnormal. Concomitantly, MAGO and Y14 selectively bound to the OsUDT1 premessenger RNA, suggesting that rice EJC subunits regulate splicing. Our work provides novel insights into the function of the EJC locus in growth, development, and reproduction in angiosperms and suggests a role for these genes in the adaptive evolution of cereals.

          Related collections

          Author and article information

          Journal
          Plant Physiol.
          Plant physiology
          1532-2548
          0032-0889
          May 12 2014
          : 165
          : 3
          Affiliations
          [1 ] State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China (P.G., C.H.); andUniversity of the Chinese Academy of Sciences, 100049 Beijing, China (P.G.).
          [2 ] State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China (P.G., C.H.); andUniversity of the Chinese Academy of Sciences, 100049 Beijing, China (P.G.) chaoying@ibcas.ac.cn.
          Article
          pp.114.237958
          10.1104/pp.114.237958
          4081321
          24820023
          ca9f54d6-a17b-40e9-9bd5-24907b4f151c
          © 2014 American Society of Plant Biologists. All Rights Reserved.
          History

          Comments

          Comment on this article