3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potential roles of stigma exsertion on spikelet fertility in rice ( Oryza sativa L.) under heat stress

      review-article
      1 , 2 , 2 , * ,
      Frontiers in Plant Science
      Frontiers Media S.A.
      rice, heat stress, spikelet fertility, flowering, stigma exsertion

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heat stress during the flowering stage induces declining spikelet fertility in rice plants, which is primarily attributed to poor pollination manifesting as insufficient pollen deposited on the stigma. Plant pollination is associated with anther dehiscence, pollen dispersal characteristics, and stigma morphology. The mechanisms underlying the responses of spikelet fertility to heat stress have been clarified in depth in terms of the morphological and behavioral characteristics of the male reproductive organs in rice. However, the roles of female reproductive organs, especially the stigma, on spikelet fertility under heat conditions are unclear. The present study reviews the superiority of stigma exsertion on pollen receptivity under heat during the flowering stage and discusses the variations in the effects of exserted stigma on alleviating injury under asymmetric heat (high daytime and high nighttime temperatures). The pollination advantages of exserted stigmas seem to be realized more under high nighttime temperatures than under high daytime temperatures. It is speculated that high stigma exsertion is beneficial to spikelet fertility under high nighttime temperatures but detrimental under high daytime temperatures. To cope with global warming, more attention should be given to rice stigma exsertion, which can be manipulated through QTL pyramiding and exogenous hormone application and has application potential to develop heat-tolerant rice varieties or innovate rice heat-resistant cultivation techniques, especially under high nighttime temperatures.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Crop Production under Drought and Heat Stress: Plant Responses and Management Options

          Abiotic stresses are one of the major constraints to crop production and food security worldwide. The situation has aggravated due to the drastic and rapid changes in global climate. Heat and drought are undoubtedly the two most important stresses having huge impact on growth and productivity of the crops. It is very important to understand the physiological, biochemical, and ecological interventions related to these stresses for better management. A wide range of plant responses to these stresses could be generalized into morphological, physiological, and biochemical responses. Interestingly, this review provides a detailed account of plant responses to heat and drought stresses with special focus on highlighting the commonalities and differences. Crop growth and yields are negatively affected by sub-optimal water supply and abnormal temperatures due to physical damages, physiological disruptions, and biochemical changes. Both these stresses have multi-lateral impacts and therefore, complex in mechanistic action. A better understanding of plant responses to these stresses has pragmatic implication for remedies and management. A comprehensive account of conventional as well as modern approaches to deal with heat and drought stresses have also been presented here. A side-by-side critical discussion on salient responses and management strategies for these two important abiotic stresses provides a unique insight into the phenomena. A holistic approach taking into account the different management options to deal with heat and drought stress simultaneously could be a win-win approach in future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rice yields decline with higher night temperature from global warming.

            The impact of projected global warming on crop yields has been evaluated by indirect methods using simulation models. Direct studies on the effects of observed climate change on crop growth and yield could provide more accurate information for assessing the impact of climate change on crop production. We analyzed weather data at the International Rice Research Institute Farm from 1979 to 2003 to examine temperature trends and the relationship between rice yield and temperature by using data from irrigated field experiments conducted at the International Rice Research Institute Farm from 1992 to 2003. Here we report that annual mean maximum and minimum temperatures have increased by 0.35 degrees C and 1.13 degrees C, respectively, for the period 1979-2003 and a close linkage between rice grain yield and mean minimum temperature during the dry cropping season (January to April). Grain yield declined by 10% for each 1 degrees C increase in growing-season minimum temperature in the dry season, whereas the effect of maximum temperature on crop yield was insignificant. This report provides a direct evidence of decreased rice yields from increased nighttime temperature associated with global warming.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight.

              Grain weight is a major determinant of crop grain yield and is controlled by naturally occurring quantitative trait loci (QTLs). We earlier identified a major QTL that controls rice grain width and weight, GW5, which was mapped to a recombination hotspot on rice chromosome 5. To gain a better understanding of how GW5 controls rice grain width, we conducted fine mapping of this locus and uncovered a 1 212-bp deletion associated with the increased grain width in the rice cultivar Asominori, in comparison with the slender grain rice IR24. In addition, genotyping analyses of 46 rice cultivars revealed that this deletion is highly correlated with the grain-width phenotype, suggesting that the GW5 deletion might have been selected during rice domestication. GW5 encodes a novel nuclear protein of 144 amino acids that is localized to the nucleus. Furthermore, we show that GW5 physically interacts with polyubiquitin in a yeast two-hybrid assay. Together, our results suggest that GW5 represents a major QTL underlying rice width and weight, and that it likely acts in the ubiquitin-proteasome pathway to regulate cell division during seed development. This study provides novel insights into the molecular mechanisms controlling rice grain development and suggests that GW5 could serve as a potential tool for high-yield breeding of crops.Cell Research (2008) 18:1199-1209. doi: 10.1038/cr.2008.307; published online 18 November 2008.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                21 September 2022
                2022
                : 13
                : 983070
                Affiliations
                [1] 1College of Agriculture, Guangxi University , Nanning, China
                [2] 2Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences , Guilin, China
                Author notes

                Edited by: Iftikhar Ali, State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology (CAS), China

                Reviewed by: Chaoying He, Chinese Academy of Sciences, China; Yaliang Wang, China National Rice Research Institute (CAAS), China

                *Correspondence: Chao Wu, wuchao@ 123456gxib.cn

                This article was submitted to Plant Abiotic Stress, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2022.983070
                9532568
                36212346
                0447394a-edd9-4fe4-979c-f356d4dcea46
                Copyright © 2022 Qi and Wu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 June 2022
                : 18 August 2022
                Page count
                Figures: 3, Tables: 2, Equations: 0, References: 90, Pages: 10, Words: 7611
                Funding
                Funded by: Natural Science Foundation of Guangxi Zhuang Autonomous Region, doi 10.13039/100012547;
                Award ID: 2020GXNSFAA297027
                Categories
                Plant Science
                Mini Review

                Plant science & Botany
                rice,heat stress,spikelet fertility,flowering,stigma exsertion
                Plant science & Botany
                rice, heat stress, spikelet fertility, flowering, stigma exsertion

                Comments

                Comment on this article