34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A comprehensive metabolic map for production of bio-based chemicals

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references159

          • Record: found
          • Abstract: found
          • Article: not found

          Planning chemical syntheses with deep neural networks and symbolic AI

          To plan the syntheses of small organic molecules, chemists use retrosynthesis, a problem-solving technique in which target molecules are recursively transformed into increasingly simpler precursors. Computer-aided retrosynthesis would be a valuable tool but at present it is slow and provides results of unsatisfactory quality. Here we use Monte Carlo tree search and symbolic artificial intelligence (AI) to discover retrosynthetic routes. We combined Monte Carlo tree search with an expansion policy network that guides the search, and a filter network to pre-select the most promising retrosynthetic steps. These deep neural networks were trained on essentially all reactions ever published in organic chemistry. Our system solves for almost twice as many molecules, thirty times faster than the traditional computer-aided search method, which is based on extracted rules and hand-designed heuristics. In a double-blind AB test, chemists on average considered our computer-generated routes to be equivalent to reported literature routes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels.

            Global energy and environmental problems have stimulated increased efforts towards synthesizing biofuels from renewable resources. Compared to the traditional biofuel, ethanol, higher alcohols offer advantages as gasoline substitutes because of their higher energy density and lower hygroscopicity. In addition, branched-chain alcohols have higher octane numbers compared with their straight-chain counterparts. However, these alcohols cannot be synthesized economically using native organisms. Here we present a metabolic engineering approach using Escherichia coli to produce higher alcohols including isobutanol, 1-butanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol from glucose, a renewable carbon source. This strategy uses the host's highly active amino acid biosynthetic pathway and diverts its 2-keto acid intermediates for alcohol synthesis. In particular, we have achieved high-yield, high-specificity production of isobutanol from glucose. The strategy enables the exploration of biofuels beyond those naturally accumulated to high quantities in microbial fermentation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The MetaCyc database of metabolic pathways and enzymes

              Abstract MetaCyc (https://MetaCyc.org) is a comprehensive reference database of metabolic pathways and enzymes from all domains of life. It contains more than 2570 pathways derived from >54 000 publications, making it the largest curated collection of metabolic pathways. The data in MetaCyc is strictly evidence-based and richly curated, resulting in an encyclopedic reference tool for metabolism. MetaCyc is also used as a knowledge base for generating thousands of organism-specific Pathway/Genome Databases (PGDBs), which are available in the BioCyc (https://BioCyc.org) and other PGDB collections. This article provides an update on the developments in MetaCyc during the past two years, including the expansion of data and addition of new features.
                Bookmark

                Author and article information

                Journal
                Nature Catalysis
                Nat Catal
                Springer Nature
                2520-1158
                January 2019
                January 14 2019
                January 2019
                : 2
                : 1
                : 18-33
                Article
                10.1038/s41929-018-0212-4
                ca75e136-4e98-496b-b32e-d05809f29d8d
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article