11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MSFT-YOLO: Improved YOLOv5 Based on Transformer for Detecting Defects of Steel Surface

      , , , ,
      Sensors
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the development of artificial intelligence technology and the popularity of intelligent production projects, intelligent inspection systems have gradually become a hot topic in the industrial field. As a fundamental problem in the field of computer vision, how to achieve object detection in the industry while taking into account the accuracy and real-time detection is an important challenge in the development of intelligent detection systems. The detection of defects on steel surfaces is an important application of object detection in the industry. Correct and fast detection of surface defects can greatly improve productivity and product quality. To this end, this paper introduces the MSFT-YOLO model, which is improved based on the one-stage detector. The MSFT-YOLO model is proposed for the industrial scenario in which the image background interference is great, the defect category is easily confused, the defect scale changes a great deal, and the detection results of small defects are poor. By adding the TRANS module, which is designed based on Transformer, to the backbone and detection headers, the features can be combined with global information. The fusion of features at different scales by combining multi-scale feature fusion structures enhances the dynamic adjustment of the detector to objects at different scales. To further improve the performance of MSFT-YOLO, we also introduce plenty of effective strategies, such as data augmentation and multi-step training methods. The test results on the NEU-DET dataset show that MSPF-YOLO can achieve real-time detection, and the average detection accuracy of MSFT-YOLO is 75.2, improving about 7% compared to the baseline model (YOLOv5) and 18% compared to Faster R-CNN, which is advantageous and inspiring.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Attention Is All You Need

          The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data. 15 pages, 5 figures
            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            You Only Look Once: Unified, Real-Time Object Detection

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Very Deep Convolutional Networks for Large-Scale Image Recognition

              In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
                Bookmark

                Author and article information

                Contributors
                Journal
                SENSC9
                Sensors
                Sensors
                MDPI AG
                1424-8220
                May 2022
                May 02 2022
                : 22
                : 9
                : 3467
                Article
                10.3390/s22093467
                35591155
                ca6daeda-ae97-42ff-b713-bb8e6486e114
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article